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Abstract

de Quadros Ligneul, Gabriel; Ierusalimschy, Roberto (Advisor).
The Implementation of Records in Pallene. Rio de Janeiro,
2019. 74p. Dissertação de Mestrado – Departamento de Informática,
Pontifícia Universidade Católica do Rio de Janeiro.

The dynamic features of scripting languages introduce significant
overhead in execution time when compared to system languages. The scrip-
ting architecture can be used to improve the poor performance of scripting
languages. The programmer should use a system language for resource-
intensive tasks, and a scripting one for flexibility. However, this architecture
has two significant flaws when used to improve the performance of scrip-
ting languages. First, there is a conceptual gap between both languages; so
migrating from the scripting language to the system language may require
enormous effort. Second, there is a hidden overhead when manipulating
the scripting-language data structures from the system language. Pallene is
a system language designed particularly for Lua that aims to solve these
two issues. Pallene is a statically-typed subset of Lua, which facilitates the
migration process. Moreover, Pallene manipulates Lua’s data structures di-
rectly without introducing overhead. In this work, we propose two types of
records for Pallene, and we present the implementation of the Pallene com-
piler. We benchmarked our compiler to compare it to standard Lua, LuaJIT,
and C programs using the Lua-C API. Our experiments show that Pallene
is competitive with the existing solutions to improve Lua’s performance.

Keywords
Lua; Static Typing; Scripting;
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Resumo

de Quadros Ligneul, Gabriel; Ierusalimschy, Roberto. A Imple-
mentação de Registros em Pallene. Rio de Janeiro, 2019. 74p.
Dissertação de Mestrado – Departamento de Informática, Pontifícia
Universidade Católica do Rio de Janeiro.

As características dinâmicas de linguagens de scripting introduzem um
gargalo significativo no tempo de execução quando comparadas a linguagens
de sistemas. A arquitetura scripting pode ser usada para melhorar o
desempenho ruim de linguagens de scripting. O programador deve usar a
linguagem de sistemas para tarefas que consomem muitos recursos, e a de
scripting para flexibilidade. Entretanto, essa arquitetura tem duas falhas
significativas quando usada para melhorar o desempenho de linguagens de
scripting. Primeiro, existe uma lacuna conceitual entre as duas linguagens,
logo migrar da linguagem de scripting para linguagem de sistemas pode
exigir enorme esforço. Segundo, existe um gargalo escondido ao manipular
as estruturas de dados da linguagem de scripting a partir da linguagem de
sistemas. Pallene é uma linguagem de sistemas projetada particularmente
para Lua que almeja resolver essas duas falhas. Pallene é um subconjunto
estaticamente tipado de Lua, o que facilita o processo de migração. Além
disso, Pallene manipula diretamente as estruturas de dados de Lua sem
introduzir gargalo. Neste trabalho, nós propomos dois tipos de registros para
Pallene, e nós apresentamos a implementação do compilador de Pallene.
Nós avaliamos o desempenho do nosso compilador para compará-la com
Lua padrão, LuaJIT, e programas C que utilizam a API C de Lua. Nossos
experimentos mostram que Pallene é competitiva com as soluções existentes
para melhorar o desempenho de Lua.

Palavras-chave
Lua; Tipagem Estática; Scripting;

DBD
PUC-Rio - Certificação Digital Nº 1721787/CA



Table of contents

1 Introduction 10
1.1 Problem 10
1.2 The Companion Language Approach 12
1.3 Objectives 13

2 Optimizing Scripting Languages 15
2.1 Optional Typing 15
2.2 Just-in-time Compilers 17

3 The Pallene Language 21
3.1 The Syntax of Pallene 21
3.2 The Pallene Type System 24
3.3 Typing Lua tables 25
3.4 Type Verification 27

4 The Internals of the Lua Interpreter 29
4.1 Lua-C API 29
4.2 Representation of Lua Values 30
4.3 C Functions 31
4.4 Tables 32
4.5 Userdata 34

5 Pallene Implementation 37
5.1 The Architecture of the Pallene Compiler 37
5.2 Manipulating Lua Tables in Pallene 39
5.2.1 Arrays 39
5.2.2 L-records 40
5.3 C-Records 42
5.4 Possible Type-Verifications Approaches For a Pallene Compiler 46
5.4.1 Eager Verification 48
5.4.2 Lazy Verification 49
5.5 Type Verification in The Pallene Compiler 50
5.6 Pallene Internal Calling Convention 51

6 Performance Evaluation 54
6.1 Benchmarks Specification 55
6.2 Comparing Pallene to LuaJIT and Lua 56
6.3 Comparing C-Records with Lua Tables 61
6.4 Evaluating the Performance of the Lua-C API 63

7 Conclusions 68
7.1 Related Works 68
7.2 Evaluating our Work 69

Bibliography 71

DBD
PUC-Rio - Certificação Digital Nº 1721787/CA



List of figures

2.1 Function declaration in Common Lisp with static type annotations
and optimize declaration. 16

2.2 Add instruction in Lua virtual machine (defined in line 1089 of
lvm.h in lua5.4.0-work1). 18

3.1 Pallene grammar described in EBNF. 22

4.1 Snippet that shows how C code obtains a field from a table using
the Lua-C API. 30

4.2 Declaration of Lua tagged values (defined in lobject.h). 31
4.3 C function that uses the Lua-C API to swap two values. 32
4.4 Lua array being initialized in the reverse order. 34
4.5 C snippet that illustrates a common mistake when using the C-API. 35

5.1 Data flow diagram presenting the steps of the Pallene compiler. 38
5.2 Code that obtains a float element at the position i of the table t. 40
5.3 Code that reads a float from the table t. The string that represents

the field is stored in the second entry of the upvalues array of the
function f. 41

5.4 Function that obtains the slot of the passed key in the hash table
t. This function uses the inline-cached position. 43

5.5 A C-records that contains both native and heap-object fields. 44
5.6 Index metamethod for C-records. 46
5.7 Generated functions that perform the index and newindex opera-

tions for the field id. 47
5.8 Pallene function that performs a binary search over an array of floats. 49
5.9 The Pallene entry point and the C entry point for a function that

add two integers. 53

6.1 Chart comparing of the running time of the experiments of Table 6.1. 65
6.2 On the top, the comparison of using C-records and Lua tables in

Lua. On the bottom, the comparison of using C-records and Lua
tables in Pallene. 66

6.3 Comparison of C programs using the C-API, Pallene, and the Lua
interpreter. 67

DBD
PUC-Rio - Certificação Digital Nº 1721787/CA



List of tables

6.1 Results of the main experiments that compare the Lua interpreter,
LuaJIT, and Pallene. 58

6.2 Comparison of Lua with incremental GC, Lua with generational GC,
and LuaJIT for Conway. 58

6.3 Comparison of LuaJIT and a hand-optimized version of the Pallene
code for Matmul. 59

6.4 Comparison of LuaJIT and Pallene when varying the sizes of the
matrices for Matmul. 60

6.5 Comparison of Lua using C-records for Centroid, Mandelbrot, and
N-body benchmarks. 62

6.6 Results of C programs using the Lua-C API for the benchmarks of
Section 6.1. 63

DBD
PUC-Rio - Certificação Digital Nº 1721787/CA



1
Introduction

Scripting languages have several high-level features that make them easier
to use when compared to system languages (OUSTERHOUT, 1998). Dynamic
typing is one of the key features in scripting languages. Programmers can write
more generic and concise code since there is not a static type system restricting
the language. It is common for scripting languages to be interpreted instead
of compiled, making them highly portable. Interpreters also enable a shorter
development and test cycle. Scripting languages usually are also garbage
collected and memory safe. Ultimately, all these features allow programmers
to write code faster.

1.1
Problem

Although scripting languages have several benefits, these languages come
with a high runtime performance cost. Scripting languages can be up to two or-
ders of magnitude slower than statically-typed languages (MARR et al., 2016).
However, programmers that seek the benefits of scripting languages sometimes
neglect the performance overhead. These programmers start writing their pro-
grams in scripting languages without worrying about the runtime performance.
Eventually, they realize that their programs perform poorly because of that
design decision. This realization may happen only when the program code base
becomes large. At this point, it is no longer viable to rewrite the whole pro-
gram in another more efficient language. Then, these programmers are inclined
to search for ways to improve the performance of programs written in a slow
scripting language.

It is not a trivial task to improve the performance of scripting languages.
Their dynamic nature hinders the usage of standard optimization techniques.
Without a static type system, it is very difficult for an ahead-of-time (AOT)
compiler to optimize a scripting language. During our research, we imple-
mented an AOT compiler for the Lua scripting language. Our Lua AOT com-
piler runs twice as fast as in the standard Lua interpreter. However, the per-
formance of our Lua AOT compiler still is in the same order of magnitude of
the Lua interpreter. The code generated by compilers of static languages is
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Chapter 1. Introduction 11

considerably faster than the code that our Lua compiler can generate.
One way to improve the performance of scripting languages is migrating

part of the program to a system language. The scripting architecture com-
bines two languages in the same program (OUSTERHOUT, 1998). The pro-
grammer uses a scripting language for expressiveness and a system language
for performance-sensitive parts. Initially, this architecture was conceived to
increase flexibility by introducing a scripting language to programs written
in system languages. Programmers that seek better performance in scripting
languages can use the same approach inversely, by migrating part of their
programs from a scripting language to a system one.

Programmers face two issues when attempting to migrate from a scripting
language to a system one. These issues are related, but they affect the
programmer at distinct levels. The first issue is the large amount of effort
necessary to migrate to a different language, as there is a conceptual gap
between both languages. Usually, system languages do not contemplate high-
level features such as dynamic data structures, closures, and polymorphism.
Programmers might face difficulties when migrating code that uses these
features to a low-level system language.

A well-designed scripting language provides an API for the system
language to manipulate the dynamic data structures of scripting languages.
This API provides abstractions that hide the implementation details of these
data structures. However, the API leads to the second issue of migrating to a
system language, which is a runtime performance overhead caused by the API
itself. In some cases, the scripting-language API can negatively impact the
performance of the system language, canceling the benefits of the migration
process. In Chapter 6, we show examples where the Lua interpreter is faster
than C code using the Lua-C API when manipulating Lua tables.

The process of migrating from a scripting language to a system one
becomes risky when considering both issues. The migration process requires a
considerable amount of effort due to the conceptual gap between the languages.
In some cases, all the effort can be fruitless due to the runtime overhead caused
by the scripting-language API.

Besides scripting, there are at least other two ways of improving script-
ing languages: optional typing (TOBIN-HOCHSTADT; FELLEISEN, 2006)
and just-in-time compilers (AYCOCK, 2003). Optional type systems intro-
duce static type annotations to the scripting language. An AOT compiler can
use these type annotations to generate efficient machine code. Just-in-time
(JIT) compilers automatically optimize scripting languages during program
execution. A JIT compiler generates specialized machine-code using informa-
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Chapter 1. Introduction 12

tion that only is available at runtime. Like scripting, there are issues when
using these approaches to improve the performance of scripting languages. We
discuss these issues in depth in Chapter 2.

1.2
The Companion Language Approach

Yet another way to improve the performance of scripting languages is us-
ing a companion language (GUALANDI; IERUSALIMSCHY, 2018). A com-
panion language is a system language designed to interoperate with a particular
scripting language. The companion language should have a static type system
so that an AOT compiler can generate efficient code. Like scripting, program-
mers should use both the scripting and the companion languages in the same
architecture. To improve the performance of the scripting language, program-
mers should migrate parts of their program to the companion language.

Unlike usual system languages, the companion language should encourage
a smooth migration from the scripting language. To reduce the conceptual gap
between the companion and the scripting languages, companion languages take
inspiration from gradually-typed languages (SIEK; TAHA, 2006). Gradually-
typed languages have optional type systems that encourage the gradual
migration from dynamic to static code. In the place of an optional type system,
the companion language is another language based on the scripting language
but with a static type system.

Gradually-typed languages have a property called gradual guarantee
which states that removing types from a correct program does not change its
behavior (SIEK et al., 2015). Companion languages should apply the gradual
guarantee property to scripting languages. If the programmer removes the
type annotations from a correct program written in a companion language,
the result should be a program in the scripting language that behaves exactly
the same as the original one.

The gradual guarantee also provides a derivative property in the opposite
direction, going from static code to dynamic code. Adding types annotations to
dynamic code has one of two outcomes: either the program behaves the same, or
it triggers a type error. When we apply this property to companion languages,
migrating from the scripting language it is just a matter of adding the correct
type annotations to the program. However, there are several programs that the
companion-language type system cannot represent. The companion-language
type system should restrict the dynamism of the scripting language to be
amenable to the optimizations of an AOT compiler.

Besides the gradual guarantee, the companion language should manipu-
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late the data structures of the scripting language directly. The manipulation
should be transparent to the programmer; an API to manipulate these data
structures should not be necessary. Instead, the companion-language type sys-
tem should have types that are built over the dynamic data structures of the
scripting languages. For instance, a companion language for Lua should have
an array type that is built over Lua tables. Retrieving an element from an
array should be equivalent to retrieving an entry with an integer key from a
Lua table.

Bypassing the API of the scripting language allows the companion-
language compiler to generate more efficient code. The companion-language
compiler should access the internals of the scripting-language interpreter.
A programmer would face difficulties if he tried to manually write code
that bypasses the scripting-language API. However, the companion-language
compiler should be carefully written so it does not violate the invariants of the
scripting-language interpreter. Bypassing the API solves the runtime overhead
present when other system languages manipulate the scripting-language data
structures.

To materialize the idea of companion languages, we developed Pal-
lene1 (GUALANDI; IERUSALIMSCHY, 2018): a companion language for
Lua. Pallene is a subset of Lua with static type annotations. The Pallene
type system characterizes the main differences between both languages. This
type system is simple; it contains only booleans, numbers, strings, arrays, and
records. Values of arrays and records types are built over Lua tables. Pallene
does not support high-level Lua features such as polymorphism to guarantee
that its compiler can generate efficient code.

1.3
Objectives

This dissertation presents the implementation of our compiler for Pal-
lene, which is an ahead-of-time compiler that generates portable C code. By
generating C code, our compiler leverages the portability and low-level opti-
mizations from a mature C compiler. Additionally, the code generated by our
compiler manipulates the data structures of the Lua interpreter directly, by-
passing the Lua-C API. We hypothesize that Pallene can archive performance
similar to the existing methods that aim to improve Lua’s performance. To
confirm this hypothesis, we measure the performance of Pallene and compare
it to the Lua interpreter, LuaJIT, and C programs that use the Lua-C API.

1Pallene is a fork of the Titan programming language (TITAN, 2018) and a collaborative
project of the LabLua research laboratory.
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Chapter 1. Introduction 14

In this dissertation, we also propose two types of records for Pallene: L-
records and C-records. Records are data structures that map a set of fields to
values of given types (like C structs). We use Lua tables to represent L-records,
even though tables are dynamic data structures and Pallene records have static
types. We use C-structs to represent C-records; to expose C-records to Lua,
we use the Lua userdata type. We implemented these two types of records in
our compiler and evaluated their performance.

In Chapter 2, we discuss optional typing and just-in-time compilers. In
Chapter 3, we describe the Pallene language, explaining the reasoning behind
the design decisions we made. In Chapter 4, we overview the internals of Lua
interpreter to clarify how Pallene manipulates them. In Chapter 5, we describe
the implementation of the Pallene compiler, especially the implementation of
Pallene’s data structures. In Chapter 6, we evaluate the implementation of the
Pallene compiler by comparing it to other ways of improving the performance
of Lua. Finally, in Chapter 7, we conclude our discussion and suggest avenues
for future research.
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2
Optimizing Scripting Languages

In Chapter 1, we described how programmers can use the scripting
architecture to improve the performance of scripting languages. Another way to
improve the performance of scripting languages is with optional type systems.
These type systems introduce static-type annotations into a dynamically
typed language. A compiler may use the static type annotations to generate
optimized code. Besides optional typing, programmes can also use just-in-
time (JIT) compilers to improve the performance of scripting languages. These
compilers use pieces of information only available at runtime to optimize the
dynamic code. In this chapter, we discuss optional type systems and JIT
compilers.

2.1
Optional Typing

Optional type systems introduce static typing annotations into dynamic
languages. Compilers and tools may use type annotations to check for type
errors and generate optimized code. The type annotations also serve as a light
machine-checked documentation. Optional typing is a broad area; moreover,
each optional type system has its specific objectives. For instance, TypedLua
(an optional type system for Lua) aims to catch type errors before execution;
it does not try to improve Lua’s performance (MAIDL, 2015).

Common Lisp (GRAHAM, 1995) is a dynamic language that allows
programmers to add type annotations in their code. Type annotations go along
with the optimize declaration, which tells the compiler to optimize the given
function. Furthermore, programmers can hand-tune the safety and speed of
their code. Unsafe code is implementation-defined and may skip runtime type
checks, leading to untrapped errors. Figure 2.1 illustrates the usage of the
optimize declaration.

Gradual typing is a version of optional typing that aims to provide
a smooth transition from dynamic to static typing (SIEK; TAHA, 2006).
Tobin-Hochstadt and Felleisen encourage programmers to migrate
from dynamic to static when scripts evolve into full-blown pro-
grams (TOBIN-HOCHSTADT; FELLEISEN, 2006). They argue that sound
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Chapter 2. Optimizing Scripting Languages 16

(defun mul (x y)
(declare (optimize (speed 3) (safety 0)))
(declare (float x y))
(the float (* x y)))

Figure 2.1: Function declaration in Common Lisp with static type annotations
and optimize declaration.

statically-typed programs are more robust since they cannot trigger runtime
type errors. When compared to the scripting approach, gradual typing fa-
cilitates language migration by reducing the boundaries between static and
dynamic. Since gradual typing includes dynamic and static typing in a single
language, both worlds can share the same runtime values. So, instead of
writing a compatibility layer to combine different languages, the programmer
only needs to rewrite part of his code with static types.

The gradual guarantee is a formal property of sound gradual typing
systems (SIEK et al., 2015). As presented in the previous chapter, the gradual
guarantee states that when removing types from a well-typed program, the
untyped version should behave the same. This property requires the gradually
typed language to be the union of both a dynamically typed and a statically
typed version of the language. If the type system is sound, the gradual
guarantee ensures runtime type errors can only occur in the dynamic side.

Even though gradual type systems benefit from a well-established theo-
retical framework, it might be challenging to implement a sound type system
in practice. Language creators have to balance soundness, usability, and per-
formance. For instance, TypeScript is a gradually typed language based on
JavaScript. Typescript creators purposely designed its type system to be un-
sound (BIERMAN et al., 2014). This design decision allows programmers to
type common dynamic idioms while keeping the type system simple. A sound
design would either require a sophisticated type system or restrict the language
too much. Nevertheless, TypeScript still helps its users to find bugs, and it also
empowers auto-completion tools.

The cost of runtime type checks is another potential issue with
gradual type systems. Typed Racket is a mature implementation of
sound gradual typing that suffers from the cost of runtime type
checks (TAKIKAWA et al., 2016). When mixing dynamically and statically
typed code, the execution time can be over 100 times slower than plainly
dynamic code. To solve this performance issue, the programmer would need
to rewrite all modules with type annotations. On the other hand, TypeScript
only checks types statically to avoid this cost; its compiler generates plain
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JavaScript without any type verifications.

2.2
Just-in-time Compilers

Just-in-time (JIT) compilation (AYCOCK, 2003) is another way to
improve the performance of dynamic languages. Usually, JIT compilers start
executing the program in an interpreter and profile its performance. When the
JIT compiler identifies a piece of code that the interpreter frequently executes
(hotspot), it generates equivalent machine code during runtime. The JIT
compiler takes advantage of runtime information that the interpreter obtained
previously. With information like the types and executed code paths, the JIT
compiler can generate optimized machine-code that is highly specialized. Then,
the JIT compiler executes this code in the place of the interpreter to improve
the program performance.

Scripting languages rarely provide enough information for ahead-of-time
(AOT) compilers to generate efficient code. Since these languages are dynamic,
variables do not have type annotations, and data structures are not statically
defined. Moreover, instructions in scripting languages tend to be polymorphic.
They have a different implementation depending on the type of input values.
An AOT compiler would have to handle all possible cases, not being able to
optimize the code entirely. With these limitations, it should not be worth to
change from an interpreter to an AOT compiler.

Figure 2.2 illustrates the polymorphic behavior in the virtual machine
of Lua interpreter. When adding up two values in Lua, the interpreter first
needs to verify the type of each of them. Depending on the types, the code
might have to perform either an integer or a floating-point addition. It is even
possible that there is a metamethod call or a runtime type error. Without type
annotations, an AOT compiler would have to generate code similar to this one.

JIT compilers tackle the lack of type information through speculation.
They generate code specialized for cases observed during profiling. Type
specialization is a typical optimization in JIT compilers for scripting languages.
In this optimization, the compiler detects variable types during execution to
generate very specialized code. In the Lua add instruction described previously,
a JIT compiler would first try to detect what are the types of input values
that occur during runtime. Then, the JIT compiler might replace the code in
figure 2.2 with just a few lines of specialized machine code for the observed
types.

The JIT compiler adds guard instructions that check whether the incom-
ing types are the ones expected. Since the language is still dynamic, the JIT
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vmcase(OP_ADD) {
TValue *rb = vRB(i);
TValue *rc = vRC(i);
lua_Number nb; lua_Number nc;
if (ttisinteger(rb) && ttisinteger(rc)) {

lua_Integer ib = ivalue(rb); lua_Integer ic = ivalue(rc);
setivalue(vra, intop(+, ib, ic));

}
else if (tonumberns(rb, nb) && tonumberns(rc, nc)) {

setfltvalue(vra, luai_numadd(L, nb, nc));
}
else

Protect(luaT_trybinTM(L, rb, rc, ra, TM_ADD));
vmbreak;

}

Figure 2.2: Add instruction in Lua virtual machine (defined in line 1089 of
lvm.h in lua5.4.0-work1).

speculation might fail. If the code receives a type different from what it ex-
pects, the compiled code hands the execution control back to the interpreter.
Eventually, the JIT compiler can adapt and recompile the corresponding code.

Method-based JIT compilers generate code for full functions. Trace-based
JIT compilers is another technique that generates code for execution traces in-
stead (GAL et al., 2006). Traces can start at any place of the function and
may even go through other function calls. Tracing JIT compilers profile back-
ward jumps in the code (usually loops) to detect hotspots. After detecting a
hotspot, the interpreter records each instruction executed during an iteration
of the loop. Like other JIT compilers, a tracing JIT gathers runtime informa-
tion, like types, to generate specialized code. Since the JIT compiler records
instructions for a single loop iteration, the trace covers only the executed path
and the compiler does not compile branches that it did not traverse. If the
compiled code reaches one of these branches during the generated trace, it
hands back the control to the interpreter.

Both method-based and trace-based JIT compilers have proven to im-
prove scripting languages performance considerably. Being the state-of-art of
dynamic language optimization, JIT compilers can achieve the performance
of system languages in some cases (MARR et al., 2016). However, archiving
this level of performance requires considerable engineering effort since JIT
compilers are hard to maintain. There are several factors responsible for the
difficulty of writing a JIT compiler. The JIT compiler needs to gather runtime
information to generate speculative machine code. The compilation has CPU
and memory constraints, differently from an AOT compiler.

The requirement to execute code in two different stages (interpretation
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and compilation) is one of the reasons that JIT compilers are hard to main-
tain. Some JIT compilers have even three stages: an interpreter, a baseline
compiler, and an optimizing compiler (MCILROY, 2016). All these stages
add up complexity to the JIT source code compared to an interpreter. Lu-
aJIT 2.0 (PALL, 2005a), a JIT compiler for Lua, has 96k lines of code, which
include 24k lines of non-portable hand-written assembly. On the other hand,
the reference implementation of Lua 5.3 has only 24k lines of portable C code.
The V8 JavaScript engine has 2 million lines of code, and a hello world program
in it consumes 17 MB of memory1.

The constraints in CPU and memory also impede JIT compiler to use
compilation frameworks. For instance, LLVM (LLVM, 2019a) is a compiler
framework designed for AOT compilers. WebKit’s FTL JIT compiler used
LLVM as a backend, but eventually, its creators replaced LLVM with a new
backend called B3 (PIZLO, 2016). Even though LLVM is highly customizable,
FTL creators concluded that they would need to replace it to reduce compile
time and memory utilization.

There exist frameworks especially designed for implementing
JIT compilers, such as PyPy (RIGO; PEDRONI, 2006) and Truf-
fle (WÜRTHINGER et at., 2013). The programmer needs only to implement
an interpreter using the provided framework, and the framework automatically
optimizes the interpreter. PyPy is a meta-tracing JIT compiler that executes
and optimizes the interpreter itself. Truffle provides tools to implement an AST
interpreter; during execution, the interpreter leverages the partial-evaluation
optimization technique of Truffle. While these approaches are promising, they
are not widely used yet.

Like AOT compilers, JIT compilers capitalize on heuristics to optimize
the source code. JIT compilers have to cover all language features, but not
all of them can be optimized appropriately. Some dynamic features hinder the
optimization in all code around it. The JIT compiler might not even trigger the
JIT compiler, and it only interprets the code. When an optimization fails in an
AOT compiler, the performance is only slightly affected. On the other hand, if
the JIT compiler does not trigger the compiler, the performance gap that can
reach two orders of magnitude. These features are called optimization killers
because they significantly impact the performance of the program. Features
that hinder optimizations can be primitive, like iterating over a collection of
values (PALL, 2014, GIRALDEZ, 2017b, ANTONOV, 2013).

Due to the difficulties of implementing a JIT compiler, it is a hard
task to change the JIT implementation to remove the optimization killers.

1Data obtained by the author using version 7.2 of V8.
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The performance gain from a JIT compiler becomes unpredictable since
the gap between optimized and not-optimized code is enormous. Hence, to
avoid the slow-down, programmers are obliged to modify their code based
on implementation details of the JIT compiler. It is not always clear where
these modifications should be since they depend on knowing the internals of
the compiler. There are even tools to disassemble the code generated by the
compiler to optimize it (GIRALDEZ, 2017b). A language like JavaScript may
have several implementations of JIT compilers, each them having different
optimization problems.

DBD
PUC-Rio - Certificação Digital Nº 1721787/CA



3
The Pallene Language

Pallene is a companion language for Lua, which means that it should
have a low conceptual gap to Lua and it should also manipulate Lua’s data
structures. In this chapter, we present how Pallene was designed to fulfill these
requirements.

3.1
The Syntax of Pallene

Pallene’s syntax is a subset of Lua’s syntax augmented with static type
annotations. An ahead-of-time compiler for Pallene uses these type annotations
to generate efficient code. Pallene’s type system limits several aspects of Lua;
some of these limitations reflect on Pallene’s syntax. For instance, Pallene’s
syntax does not contemplate multiple returns, variadic functions, closures,
generic iteration, and a few other features. Nevertheless, when removing the
type annotations from Pallene code, the code is still valid in Lua.

Figure 3.1 presents the grammar of Pallene using the EBNF notation.
Unlike Lua, Pallene does not accept statements in the outermost scope of the
program. The outermost scope of a Pallene program forms a Pallene module,
which is a set of function declarations and type aliases. These functions can
be called from Lua.

Pallene features the following types: booleans, floats, integers, strings,
arrays, L-records, and C-records. In this section, we only describe the syntactic
aspects of these types; we describe the semantics in the following sections.
Pallene’s syntax denotes booleans, floats, integers, and strings types as reserved
words with the respective names. Array types are denoted by enclosing curly
braces and the type of the elements. For instance, {{float}} is an array of
arrays of floats.

Pallene’s syntax denotes both types of records with enclosing curly braces
and a list of fields. Each field is denoted by a static identifier followed by a
type. Record declarations that have the modifier C before the opening curly
braces are C-records. Record declarations without this modifier are L-records.
For instance, C{x: float, y: float} is a C-record with two fields named x
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module ::= { typealias | funcdecl }

typealias ::= 'type' Identifier '=' type

funcdecl ::= 'function' Identifier '(' paramlist ')' [':' type]
chunk 'end'

type ::= Identifier | 'boolean' | 'float' | 'integer' | 'string'
| '{' type '}' | 'C'? '{' paramlist '}'

paramlist ::= Identifier ':' type {',' paramlist}

chunk ::= {stat [';']} [laststat [';']]

stat ::= var '=' exp
| call
| 'do' chunk 'end'
| 'while' exp 'do' chunk 'end'
| 'repeat' chunk 'until' exp
| 'if' exp 'then' chunk

{'elseif' exp 'then' chunk}
['else' chunk] 'end'

| 'for' Identifier ':' type '=' exp ',' exp [',' exp]
'do' chunk 'end'

| 'local' Identifier ':' type '=' exp

laststat ::= 'return' [exp] | 'break'

var ::= Identifier | prefixexp '[' exp ']' | prefixexp '.' Identifier

exp ::= 'nil' | 'false' | 'true' | Number | String
| '{}' | '{' explist '}' | '{' fieldlist '}'
| prefixexp | unop exp | exp binop exp

prefixexp ::= var | call | '(' exp ')'

call ::= prefixexp '(' [explist] ')'

explist ::= exp {',' explist}

fieldlist ::= Identifier '=' exp {',' fieldlist}

binop ::= '+' | '-' | '*' | '/' | '^' | '%' | '..'
| '<' | '<=' | '>' | '>=' | '==' | '~='
| 'and' | 'or'

unop ::= '-' | 'not' | '#'

Figure 3.1: Pallene grammar described in EBNF.
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and y that are floating-points. The type {x: float, y: float} is an L-record
with the same fields.

Programmers can use a type alias to avoid repeating the same type
declaration in Pallene code. Pallene’s syntax denotes a type alias as an identifier
followed by a type. For instance, the following type alias bounds a C-record
with two fields to the identifier student:

type student = C{
name: string,
grades: {

course: string,
grade: float

}
}

After the declaration of this alias, Pallene code can refer to the identifier
student as the declared C-record. It is worth noting that Pallene does not
support recursive types.

Variables in Pallene have their types annotated during compile time.
Programmers should annotate the type of the variable after its name. For
instance, the following statement declares an array of integers:

local xs: {integer} = {1, 2, 3}

Functions in Pallene also have their types annotated. All parameters of
the function should have a respective type annotation. Omitting the resulting
type in a function means that the function does not return a value. Unlike
in Lua, Pallene functions can not be reassigned like variables. The following
snippet presents an example of a Pallene function that computes the average
of an array of floats:

function average(arr: {float}): float
if #arr == 0 then return 0 end
local sum: float = 0.0
for i: integer = 1, #arr do

sum = sum + arr[i]
end
return sum / #arr

end

By removing the type annotations of this function, the code becomes valid in
Lua.
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3.2
The Pallene Type System

As we discussed in Chapter 1, Pallene follows the gradual guarantee
property of gradually-typed languages. Unless there is a type error, removing
the types from a Pallene program results in a Lua program with exactly the
same behavior. Type errors in Pallene may happen either in compile time or
in execution time. The Pallene type system is what defines these type errors.

We removed some dynamic Lua features from Pallene by omitting them
in the syntax, such as the generic for-loop and methods. Nonetheless, these
restrictions come from the type system. We can use the type system to explain
the differences between both languages. It is worth noting that the type system
was not designed to give compile-time guarantees to the programmer. Instead,
the type system restricts Lua dynamism to guarantee that an ahead-of-time
compiler can generate efficient code.

Even though Pallene has types, the representation of values is the same
in both languages. For instance, strings in Pallene are the same strings of Lua.
However, not all Lua values have a representation in the Pallene type system.
For instance, currently Pallene does not have types that represent nil, maps,
and objects.

Lua has the type number, which is the union of both integers and floating-
point subtypes. During execution, the Lua interpreter converts between these
subtypes automatically when necessary. In Pallene, we opted not to include
number, but these subtypes as separate types. This design decision removes
from Pallene the requirement to make runtime conversions between the number
subtypes. It also gives more room for optimizations, since the Pallene compiler
knows the internal representations of numbers during compile time.

Pallene triggers a runtime type error when the programmer passes the
wrong numeric type to a function. Consider the following Pallene function that
receives a float:

function double(x: float): float
return x * 2.0

end

If Lua calls this function passing an integer, Pallene triggers a type error rather
than of coercing the value. By removing the type annotations, the Lua version
produces the same result that Pallene does. Pallene could produce a different
result from Lua if it were to coerce the integer to a floating-point. For instance,
if Lua passes the integer 4611686018427387903, the result of the Lua function
would be 9223372036854775806. By converting this integer to a float, Pallene
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would lose precision and return 9223372036854775808. Hence, Pallene triggers
a type error instead.

In the place of coercion, numeric operations in Pallene are polymorphic as
in Lua. For instance, Pallene automatically converts integers when there is an
addition to a floating-point. However, the current version of Pallene restricts
some operations that are polymorphic in Lua. The concatenation operator
only accepts strings, and comparison expressions only accept values of the
same type.

Control statements (if, while, repeat) and logical expressions (and, or,
not) only accept boolean expressions. Due to this limitation, the Pallene type
system does not accept some common Lua idioms. For instance, there is an
idiom that uses the or-expression to assign a default value to a variable. The
following line presents this idiom in Lua:

x = x or 10

If the value of the variable x is nil or false then the expression returns 10,
otherwise it returns x. The type system does not accept this statement because
the expressions are not booleans and because there is no optional type. In
Pallene, the variable x could not be neither nil nor false.

3.3
Typing Lua tables

Lua tables are versatile. Programmers use them to represent arrays,
records, maps, sets, objects, modules, and even the global environment. Using
the same data structure for all these applications is only viable in a dynamic
language. It is even possible to represent two structures at once with a single
table. The following line shows a common idiom where a table represents both
an array and a record simultaneously:

local line = {
{x = 1.3, y = 3.2},
{x = 4.2, y = -1.7},
{x = 8.1, y = 7.5},
color = "red"

}

Pallene does not try to mimic the dynamic behavior of tables since it
would be too complicated to describe it with a static type system. A static
type that covers all table applications would also hinder optimizations that an
AOT compiler can do. Instead, Pallene defines stricter types that are built over
Lua tables: arrays and L-records. Programmers may create an array or an L-
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record in Pallene, and return it to Lua as a plain table. Likewise, programmers
can create a table in Lua and pass it to Pallene where it expects an array or an
L-record. Pallene may trigger a runtime type error if the entries in the table
do not comply with the corresponding type annotation.

Pallene arrays are tables where all keys are integers, and all values have
the same type. Pallene triggers a runtime type error if the code accesses an
element that has a type different from the annotation. (Since the absence
of entries in tables results in nil, Pallene also triggers this same type error
when the field is absent.) For instance, suppose Lua calls the function average
presented in the previous section with the following table:

average({1.2, 3, 4.6})

This function expects an array of floats but the value in the second entry is an
integer. Pallene verifies that the type of the element is not the one expected
and triggers a type error.

In Pallene, arrays grow automatically when the program adds new
elements to it. The program can add a new element in any position of the
array; the only limit is the memory available to the program. When doing so,
Pallene does not automatically initialize any other elements in the array. The
code may initialize an array in the reverse order, but it needs to assign all
elements to make it a valid sequence again.

L-records and C-records map static fields to values of a given type. These
fields are represented by string keys in Lua tables. Just like arrays, Pallene
verifies the type of the fields when accessing them.

Pallene does not trigger a type error if tables contain other keys in
addition to the ones expected. Hence, an array coming from Lua may have
string keys and L-records may have integer keys. However, Pallene code has
no way to access these extra fields. For instance, suppose the following Pallene
function that receives an L-record that represents a point:

type point = {
x: float,
y: float

}
function dot(a: point, b: point): float

return a.x * b.x + a.y * b.y
end

Pallene does not trigger a type error if Lua passes the following table to the
function dot, even though this table has an extra field:

dot({x = 1.0, y = 2.0, z = 3.0})
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Pallene has another type of records called C-records which has the same
set of operations of L-records. However, C-records are not built over Lua
tables. Instead, C-record values are represented by userdata objects in Lua.
Programmers can create C-records in Pallene and pass them to Lua. Lua code
can write and read the fields of C-records using the usual dot notation. In
chapter 5, we describe in more depth the differences between the two types of
records.

3.4
Type Verification

We want the Pallene compiler to have as much room for optimization as
possible. Nevertheless, Pallene still is a type-safe language. Pallene must verify
the type of values it receives from Lua before manipulating them. Lua can
pass values that are incompatible with the types Pallene expects since Lua is
a dynamic language.

To give more room for optimization, Pallene allows its compiler to
trigger a runtime error at any point of a function. If Lua only passes values
that Pallene expects, the program should behave as expected. Otherwise, the
Pallene compiler has the freedom to trigger a runtime error at any point. The
runtime error might happen at the beginning of the function or just before
Pallene uses the value. There are no rules about when the error happens.

Going even further in this direction, Pallene does not need to verify the
type of values it does not use. For instance, if there is an execution path that
does not use one of the parameters in a function, Pallene can either verify its
type or not. The following snippet presents a record with three fields and a
function that receives this record:

type person = {
firstname: string,
lastname: string,
age: integer

}

function fullname(p: person): string
return p.firstname .. ' ' .. p.lastname

end

Observe that this function does not access the field age, so Pallene does not
need to verify whether this field is present in the table. The Pallene compiler
can choose what is more efficient to do.

As another example, consider the following Pallene function:
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function copy(arr: {float}): {float}
local new: {float} = {}
for i = 1, #arr do

new[i] = arr[i]
end
return new

end

If the received parameter is indeed an array of floats, the function behaves as
expected. The code generated by the Pallene compiler can trigger a type error
in the middle of the procedure if it finds an incompatible element. However,
since Pallene does not use the value directly, the compiler is free to generate
another version of this function. In this version, the code copies the elements
from one array to the other without checking their type first. Even without
checking the type, the language is still safe because it does not manipulate the
value directly.
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4
The Internals of the Lua Interpreter

Lua provides an API so C programs can manipulate Lua values. However,
this API has abstractions that introduce a runtime performance overhead.
We want to obtain the best performance possible when manipulating Lua
values in Pallene. Therefore, the code that the Pallene compiler generates
bypasses the C API, accessing the internals of the Lua interpreter directly.
In this chapter, we give a brief overview of the Lua-C API and we also present
the internal data structures of the Lua interpreter that Pallene manipulates.
(We cover the version 5.4.0-work1 for the Lua interpreter.) Pallene uses C
closures to represent Pallene functions, Lua tables to represent arrays and L-
records, and full userdata objects to represent C-records. Knowledge of the Lua
interpreter’s internals is important to understand the Pallene implementation
that we describe in the next chapter.

4.1
Lua-C API

The Lua-C API creates an abstraction layer that helps C programmers.
Instead of manipulating the interpreter structures directly, there is a set of API
functions to help them. Moreover, the C API is mostly stable among different
versions of Lua. When a new version of Lua is released, the programmer has
only to make minor changes to his code, if any. Meanwhile, the internals of the
interpreter are free to change in different versions of Lua.

The Lua-C API does not expose any internal data structure of the
interpreter to the C programmer. The programmer must use the functions
of the C API to manipulate Lua values. All Lua values that the C code
manipulates must stay in an abstract stack of values. The Lua stack is opaque
to programmers using the C API, so they must use the API functions to
manipulate the stack. For instance, the function lua_tonumber obtains a
floating-point number in a given position of the Lua stack. The function
lua_pushnumber inserts a number into the top of the Lua stack.

Figure 4.1 exemplifies the use of the Lua stack when manipulating a
Lua table. First, the code in the figure obtains the table t from the global
environment by calling the function lua_getglobal. This function pushes the
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lua_getglobal(L, "t");
if (lua_getfield(L, -1, "x") != LUA_TNUMBER)

luaL_error(L, "x must be a number");
lua_Number id = lua_tonumber(L, -1);

Figure 4.1: Snippet that shows how C code obtains a field from a table using
the Lua-C API.

value of the global variable into the top of the Lua stack. Like all API functions
that manipulate the Lua stack, lua_getglobal expects the Lua state as the
first argument (represented by the variable L in the figure).

In the following line, the code calls the function lua_getfield to obtain
the entry indexed by the string "x". This function expects as the second
argument the position of the table in the Lua stack. A positive integer indicates
that the position starts from the base of the stack and a negative integer
indicates that it starts from the top of the stack. The code passes −1 to the
function lua_getfield since the table is at the first position starting from the
top of the stack. The function lua_getfield pushes the value indexed by the
passed string in the top of the stack and returns the type of the value.

The code of the figure uses the return of lua_getfield to verify if the
type of the value is a number. If the value is not a number, the code calls the
function luaL_error passing an error message. This function triggers a Lua
error and throws an exception (via long jump). In the last line, the code calls
the function lua_tonumber to obtain the number from the Lua stack. This
function also expects the position of the value in the Lua stack. The position
of the value is −1 since the function lua_getfield pushed it into the top of
the stack.

The Lua-C API allows programmers to manipulate Lua values in C.
However, the C API also introduces a runtime overhead when compared to
manipulating the values of the interpreter directly. Part of the overhead is
caused by the computation the real position of the value in the stack based
on a relative position. A compiler cannot optimize this kind of computations
since they are inside the API function. Even the extra call to the API function
introduces a small overhead that does not exist when accessing the Lua values
directly.

4.2
Representation of Lua Values

The Lua interpreter represents the Lua dynamic values as tagged values.
A tagged value is a structure that contains both the actual value and an integer
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typedef union Value {
struct GCObject *gc; /* collectable objects */
void *p; /* light userdata */
int b; /* booleans */
lua_CFunction f; /* light C functions */
lua_Integer i; /* integer numbers */
lua_Number n; /* float numbers */

} Value;

/* ... */

#define TValuefields Value value_; lu_byte tt_

typedef struct TValue {
TValuefields;

} TValue;

Figure 4.2: Declaration of Lua tagged values (defined in lobject.h).

tag representing the type of the value. Figure 4.2 presents the declaration of the
struct that defines Lua tagged values. The union Value contains the different
C types that a tagged value can store.

Depending on the type, the Lua interpreter stores the Lua value directly
in the tagged value. The types of these values can be nil, boolean, number
(integer and floating-point), and light userdata. The interpreter dynamically
allocates memory in the heap to store values of other types; we call these
values heap-objects. For such types, the tagged value stores only a pointer to
the heap object. Heap-objects can be strings, tables, functions, threads, and
full userdata. The Lua garbage collector keeps track of heap-objects and frees
them when there are no more references to them.

4.3
C Functions

Programmers can expose C functions to Lua using the C API. These
functions should follow the Lua calling convention so the interpreter can call
them. In C, these functions receive just one parameter which is an opaque
data structure called Lua state. The Lua states allow the programmers to
manipulate the Lua stack. The interpreter places the actual arguments to the
function in the Lua stack. It is worth noting that Lua supports multiple returns.
The C function should place the return values in the Lua stack and return in
C the number of values it is returning in the Lua stack.

Figure 4.3 presents a C function that can be exposed to Lua with the
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int swap(lua_State *L)
{

lua_pushvalue(L, 2);
lua_pushvalue(L, 1);
return 2;

}

Figure 4.3: C function that uses the Lua-C API to swap two values.

C API. The function swap receives two Lua values and returns them in the
inverse order. Swap uses the function lua_pushvalue to rearrange the Lua
stack. The function lua_pushvalue receives a stack position and pushes a
copy of the value in that position into the top of the stack. The function swap
uses lua_pushvalue to place the second and then the first arguments into the
top of the stack in that order. Finally, swap returns 2 in C, indicating that it
is returning to Lua the two values at the top of the stack.

When creating a C function value in Lua, programmers can associate a
list of Lua values to it, forming a C closure. The values associated with the
C closure are called upvalues. C code may access these upvalues by using the
C API during the closure call. Internally, a C closure is a heap object that
contains a pointer to the C function and the array of upvalues. (This array has
a fixed size.)

Programmers can also create C functions that do not have any upvalues
associated with them. These functions are called light C functions. Light C
functions just contain the pointer to the actual function. Hence, the interpreter
does not need to create a heap object to represent them. Instead, the interpreter
stores light C functions directly in the tagged value.

4.4
Tables

Tables are the sole data-structure mechanism in Lua. They are associative
arrays that map keys of any type to any values of any type. The name “table”
comes from hash tables, which was how older versions of Lua implemented
them. For performance reasons, hash tables are not the best representation for
arrays of values. Starting from Lua 5.0, Lua tables contain a part specialized
for arrays in addition to the hash table (IERUSALIMSCHY et al., 2005). Lua
hides the hybrid implementation from the programmer. The interpreter does
not allow programmers to manually place entries in a specific part. Instead,
the Lua interpreter places the entries with integer keys automatically.

Lua has this hybrid implementation exclusively for optimization pur-
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poses. The hybrid implementation improves Lua’s performance in two ways.
First, it accelerates the access to fields in the array part, since there is no need
to compute the hash of the key. Second, it also reduces the memory footprint
since the array keys are implicit; the array part only stores the values of the
entries.

The array part stores values indexed by positive integer keys. The
position of the entry in the array part represents the key. Entries indexed
by negative integers or keys of other types stay in the hash part. The Lua
interpreter also has an optimization for sparse arrays and entries with large
integer keys. The interpreter does not allocate a huge array if it were to be
mostly empty; instead, it places these entries in the hash part too.

The Lua interpreter keeps the array part capacity to the largest power
of 2 such that more than half of the entries are not nil. Entries with integer
keys larger than the array capacity stay in the hash part. The capacity of the
hash part is the smallest power of 2 that fits all remaining entries. For instance,
consider a Lua table that contains entries with the keys 1, 2, 3, 5. The capacity
of the array part of this table is 4 and the capacity of the hash part is 1. The
interpreter places the first three entries in the array part and the entry with
the key 5 in the hash part. The interpreter does not place all the entries in
the array part since the capacity would be 8 and the number of empty entries
would be 4.

When the programmer inserts new entries to the Lua table, the inter-
preter grows the table automatically if there is not space for the entry. When
growing the table, the interpreter performs a rehash operation. The first step of
this operation is to find the capacity of the array part according to the largest
power-of-2 rule. Then, the interpreter computes the capacity of the hash part
to fit the remaining entries. After knowing the capacities of both parts, the
interpreter rearranges the entries accordingly.

Figure 4.4 illustrates the rehash process. In this figure, there is a Lua table
with integer keys being initialized in the reverse order. The Lua interpreter first
inserts the entries with keys 5, 4, 3 in the hash part, since there are not enough
entries to fill more than half of an array multiple of two. At this point, the
hash part has capacity 4 and the array part capacity 0. The entry with the
key 2 also goes to the hash part since there is space for it in the hash part.
Finally, the interpreter performs a rehash operation when it inserts the entry
with the key 1. Then, it transfers all entries from the hash part to the array
part; the capacity of the hash part becomes 0 and the capacity of the array
part becomes 8.

When the programmer creates a table, the Lua interpreter allocates
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local a = {}
for i = 5, 1, -1 do

a[i] = i
end

Figure 4.4: Lua array being initialized in the reverse order.

the exact amount of memory necessary to fill its capacity. Only when the
programmer inserts a new entry to the table that the interpreter follows the
largest power-of-two rule. This behavior avoids waste of resources if the array
does not increase. For instance, suppose a Lua table with being initialized with
the following list: {'a', 'b', 'c', 'd', 'e'}. The initial size for the array
part in this table is 5. If the programmer inserts a new entry to the table, the
array size should become 8. Even if Lua places the new entry in the hash part,
the insertion triggers the rehash operation that resizes the array part as well.

Lua tables also do not shrink automatically. The Lua interpreter only
resizes the table in the rehash operation. In its turn, the interpreter only
triggers the rehash operation when there is not space for a new entry. Hence, if
a programmer removes an entry from a table, the interpreter does not reduce
its size. For instance, a programmer can create an array with 1000 entries and
later assign nil to all of them. The array part stays with 1024 slot and all of
these slots are empty.

4.5
Userdata

Programmers can create values of the type userdata with the C API.
These values represent C pointers and are opaque in Lua; Lua code cannot
manipulate a C pointer directly. Lua code simply holds a reference to the
pointer and sends it back to C.

There exist two subtypes of userdata in Lua: light userdata and full
userdata. Just like light C functions, a light userdata is just a C pointer. The
interpreter stores light userdata values directly in the tagged value. A full
userdata is a heap object and the tagged value stores a pointer to it.

Programmers can use the C API to create a full userdata with the func-
tion lua_newuserdata. This function receives the wanted size for the memory
chunk and returns a pointer to the chunk. The function lua_newuserdata also
pushes the userdata into the top of the Lua stack. Since the full userdata is a
heap object, the Lua garbage collector is responsible for freeing it.

A common mistake that Lua programmers make is accessing a userdata
after removing it from the Lua stack. Figure 4.5 presents a C snippet that
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lua_getglobal(L, "f");
struct data *d = lua_newuserdata(L, sizeof(struct data));
fill_data(d);
lua_call(L, 1, 0);
print_data(d);

Figure 4.5: C snippet that illustrates a common mistake when using the C-API.

illustrates this mistake. The first line of the code obtains the global f with the
function lua_getglobal. The C code expects that this value is a Lua function.
Then, the code creates a userdata with the function lua_newuserdata and
initializes the userdata with the function fill_data. At this point, the Lua
stack top values are the function f and the userdata.

In the following line, the code calls the function lua_call. This function
calls a Lua function in the stack passing arguments that are also in the stack.
The second parameter of lua_call indicates the number of arguments and the
third parameter indicates the number of expected return values. Before calling
lua_call, the programmer should push into the top of the stack the function
followed by the arguments. After the call, lua_call removes the function and
the arguments from the stack leaving just the return values. Since the code
in Figure 4.5 passed the integer 1 as the second paramter, lua_call calls the
function f passing the userdata as the argument.

The function lua_call pops the userdata object from the Lua stack
before it returns. In the next line, the code calls the function print_data that
accesses the contents of the userdata to print it in the screen. However, if the
Lua code of the function f did not maintain any references to the userdata,
the Lua garbage collector might have freed it. Accessing the userdata after
popping it from the stack might lead to a use-after-free memory error. To solve
this issue, the programmer should push into the Lua stack another reference
to the userdata with lua_pushvalue before calling lua_call.

Full userdata objects can keep references to other Lua values. Program-
mers cannot store heap objects in the memory part of the userdata since the
C API does not provide pointers to them. Instead, full userdata objects have
a separate area for Lua values. Starting from Lua 5.4, a userdata can have an
array of values just like C closures. (Before version 5.4 of Lua, a userdata could
only store a single Lua value.) The Lua values stored in a userdata are called
user values. Full userdata objects contain the memory part accessible through
a pointer and the array of user values.

Another mistake is keeping a reference to another userdata in the memory
part. The Lua garbage collector can only reach the values in the user values
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array. If the reference to the other userdata is only in the memory part, the
garbage collector does not reach this reference. Hence, the other userdata might
be collected and the pointer to it in the memory part would become invalid.
All heap objects should be stored in the user values array.
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5
Pallene Implementation

We wrote an ahead-of-time compiler for Pallene in Lua1. Our compiler
receives a single Pallene source file as input. The output of the compiler is an
extension library for Lua. An unmodified version of the Lua interpreter can
load this library like any other extension library. After loading the Pallene
library, Lua code can call Pallene functions. In this chapter, we describe the
implementation of the Pallene compiler.

5.1
The Architecture of the Pallene Compiler

Our compiler’s first step is to parse the input file with the help of
the LPeg pattern-matching library (IERUSALIMSCHY, 2009). Hence, we
converted the CFG presented in Chapter 3 to a valid PEG. The compiler
also uses the LPegLabel library in addition to LPeg to handle syntax er-
rors (MEDEIROS; MASCARENHAS, 2018).

During the parsing step, our compiler builds an abstract syntax tree
(AST) based on the Pallene input code. After the compiler builds the AST,
it checks whether the static type annotations comply with the Pallene type
system. The compiler stops the compilation process if it catches any type
errors during this step. The compiler also binds the variables names to its
declarations during the type checking step.

After the type checking step, the Pallene compiler generates C code
by traversing the AST. Generating C code has three main advantages when
compared to generating assembly code. First, it is easier to write a compiler
that generates C since it is higher-level than assembly. One line of C code can
be equivalent to several lines of assembly. Furthermore, it is easier to read C
than assembly, which facilitates the debugging process during the development
of our compiler.

The second advantage of generating C code is portability. C is a portable
language; there are several C compilers available for a wide range of architec-
tures. By generating C, our compiler does not need to perform low-level tasks,

1The source code of the Pallene compiler for this dissertation is available at https:
//github.com/pallene-lang/pallene/tree/gabriel-masters.

https://github.com/pallene-lang/pallene/tree/gabriel-masters
https://github.com/pallene-lang/pallene/tree/gabriel-masters
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Figure 5.1: Data flow diagram presenting the steps of the Pallene compiler.

such as allocating registers and generating code for the platform calling con-
vention. The Pallene compiler does not generate any platform-specific code; the
code that our compiler generates is plain C99. Any C compiler that complies
with the standard can compile the C code that our compiler generates.

The third advantage of generating C code is leveraging the optimizations
that a C compiler already performs. A mature C compiler like GCC already
performs several low-levels optimizations over the C code. Our compiler
generates code that is amenable to these optimizations. It is important for
our compiler to perform such optimizations before generating the final library.
However, it would require a considerable amount of effort to implement
these optimizations in our compiler. Generating C allows us to leverage the
optimizations already done by mature C compilers.

We considered using the compiler framework LLVM for our compiler
instead of generating C code. LLVM provides the same advantages of a
C compiler when compared to generating assembly. However, C is still
more portable than LLVM; GCC by itself supports more platforms than
LLVM (LLVM, 2019b). We chose to generate C since we want the Pallene
compiler to be as portable as possible.

After generating the C code, our compiler invokes a C compiler (e.g.
GCC) to generate the final Lua extension library. This process is transparent
to the programmer; our compiler does not expose the temporary C code.
Figure 5.1 presents a data flow diagram with all the steps that our compiler
performs.

The Lua extension library that our compiler generates follows the ABI
that the Lua interpreter expects. An unmodified version of the interpreter
can load this extension library using Lua’s require function. Like other Lua
extension libraries, the generated Pallene library exports a Lua table with
Pallene functions. From the point of view of the Lua interpreter, Pallene
functions are just C closures. These functions follow the Lua calling convention;
hence, the Lua code can call these functions normally.

Even though Pallene functions are C closures, the code that our compiler
generates bypasses the Lua-C API. Instead of using the Lua-C API, the code
manipulates the data structures of the Lua interpreter directly. This allows
Pallene to overcome the runtime overhead caused by some of the abstractions

DBD
PUC-Rio - Certificação Digital Nº 1721787/CA



Chapter 5. Pallene Implementation 39

in the Lua-C API. Moreover, accessing the internals of the interpreter directly
gives more room for the C compiler to optimize the code generated by our
compiler.

However, there is a disadvantage when bypassing the Lua-C API. The
Lua-C API is stable among different releases of the same Lua version. For
example, Lua 5.3.1, 5.3.2, and 5.3.3 are three different interpreter releases for
the version 5.3 of the language. All these releases have the same Lua-C API,
but the internal data structures of the Lua interpreter can be different. The
code that our compiler generates is therefore bound to a specific release since it
bypasses the Lua-C API. During the library initialization, Pallene code verifies
that the release of the Lua interpreter is compatible with the library.

5.2
Manipulating Lua Tables in Pallene

One of the key features of Pallene is being able to manipulate Lua
values. Pallene can manipulate Lua tables, even though they are dynamic
data structures. To manipulate a dynamic data structure in a static language,
Pallene introduces two types that are built over Lua tables: arrays and L-
records. When Pallene creates a data structure of these types, the code creates
a Lua table. When Lua passes a table to Pallene, the code expects either an
array or an L-record. To manipulate both types of data structures, the code
that our compiler generates accesses the table structure directly.

5.2.1
Arrays

When looking for an element in a Pallene array, the code first verifies
the tag of the Lua value to check whether it is a table. In Section 5.4 and
Section 5.5, we describe when our compiler perform these verifications. After
verifying the tag, the code performs a bounds checking. If the key is smaller
than the capacity of the array part then the code accesses the array part of
the table directly. Otherwise, the code uses the function luaH_getint to look
up for the entry in the hash part of the table. Once the code finds the entry,
it performs a type verification and obtains the expected element.

Figure 5.2 illustrates the code that our compiler generates when looking
up for an element in a Pallene array of floats. In this figure, i is the integer key
and t is the pointer to the Lua table. In the first line, the code converts the 1-
based Lua index to a 0-based index. Then, the code performs the bounds
checking; the code accesses the array part directly if the index is smaller
than the capacity of the array part. Otherwise, the code uses the function
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unsigned int ui = i - 1;
TValue *slot;
if (ui < t->sizearray) {

slot = &t->array[ui];
}
else {

slot = luaH_getint(t, i);
}
if (!ttisfloat(slot)) {

array_type_error(L, LUA_TNUMFLT);
}
lua_Number v = fltvalue(slot);

Figure 5.2: Code that obtains a float element at the position i of the table t.

luaH_getint to look up for the entry in the hash part. After looking up for
the entry, the code verifies whether the type of the value in the slot is a float
by using the macro ttisfloat. If the value is not a float as Pallene expects,
the code triggers a Lua error calling the function array_type_error. Finally,
the function obtains the actual float value from the slot by calling the macro
fltvalue.

The code for inserting an element in a Pallene array is similar to the code
for retrieving an element. After verifying the tag, the code looks up whether the
table already contains a slot with the given key. The code performs a bounds
checking and tries to obtain the element from the array part if it is smaller
than the capacity. Otherwise, the code looks up for the entry in the hash part
with luaH_getint. If the code does not find the entry in the hash part, it
uses the function luaH_newkey to create a new entry for the given key. The
function luaH_newkey grows the Lua table if necessary. Once the code has the
slot of the entry, it writes the value to the slot using the macro setfltvalue.

Notice that the code for array manipulation has a fast path when the
element is in the array part. In this fast path, the code avoids calling functions.
Instead, the code either access Lua’s data structures directly or calls macros
defined by the Lua interpreter. This fast path avoids the unnecessary overhead
of calling functions for the case that we expect to be the most common one.

5.2.2
L-records

Fields of L-records stay in the hash part of Lua tables because they are
indexed by strings. To manipulate these fields, our compiler needs to compute
the hashes of these strings. However, it is not possible to pre-compute these
hashes at compile time because the Lua interpreter randomizes string hashes
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TString *key = tsvalue(&f->upvalue[1]);
static int pos = 0;
TValue *slot = pallene_getstr(t, key, &pos);
lua_Number v = fltvalue(slot);

Figure 5.3: Code that reads a float from the table t. The string that represents
the field is stored in the second entry of the upvalues array of the function f.

during runtime. Hence, a given string has a different hash for each program
run. The interpreter performs this randomization for security purposes.

To avoid repeating the computation of the string hashes, the Lua
interpreter stores the hash inside the string object. The interpreter computes
the hash only once when the string is created. Later, the interpreter recovers
the hash from the string to look up an entry in a table.

Our compiler also uses the hashes stored in strings to look up fields of
L-records. The code initializes the strings that represent the fields of L-records
when the module is loaded. The code stores these strings in the upvalues
arrays for each Pallene function of the module. When accessing a field, the
code recovers the respective string from the upvalues array.

Besides recovering the hashes from strings, our compiler uses inline
caching (DEUTSCH; SCHIFFMAN, 1984) to further optimize the manipu-
lation of L-records. In this optimization, the code creates a cache of the last
position that the field was found in the hash table. When accessing the field,
the code first checks whether the entry at the cached position is the one being
looked for. If the entry is not the one expected then the code performs the
look up normally and updates the cached position.

Figure 5.3 presents the code that our compiler generates to obtain a
floating-point field from a L-record. In the first line, the code obtains from the
upvalues array the string that represents the field. In the following line, the
code declares the static variable that caches the last position that the field was
found. Then, the code calls the function pallene_getstr that obtains the slot
indexed by the given string key. This function first checks the cached position
and updates it if necessary. Finally, the code obtains the actual floating-point
with the macro fltvalue.

Writing a field to a L-record is similar to reading a field. The code also
has a inline cache and uses the function pallene_getstr to obtain the slot
of the field. If there is not a slot for the field in the table, the code uses the
function luaH_newkey to create a new one. Then, the code calls a macro to
write the given value to the slot of the field.

Figure 5.4 presents the function pallene_getstr. Notice that this is a
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inline function so the C compiler can better optimize the code. First, the code
checks whether the cached position is smaller than the size of the hash part,
which is given by the sizenode macro. If the position is smaller, the code
obtains the node at the cached position by calling the macro gnode. Then,
the code checks whether the key of the node is a string by calling the macro
keyisshrstr. Finally, the code checks whether the key of the node is equals
to the passed key by calling the macro eqshrstr. If the keys are equal then
the function returns the slot that was found. This is a fast path that uses the
position previously cached.

If the inline caching fails, the function pallene_getstr looks up the
wanted slot like the Lua interpreter. The code computes the modulo of the
string’s hash by the size of the hash table to start the lookup process. Inside a
loop, the code checks whether the key in the current position is equals to the
passed key. If the node with the passed key is found then the code updates
the cache and returns the found slot. If the key is different, the code checks
whether there is a conflict by obtaining the offset to the next node. If the
offset is zero then there is no conflict and the function returns a empty object
to indicate it did not find the slot. Otherwise, the code updates the current
position and continues the lookup process.

5.3
C-Records

As we explained in Chapter 3, C-records provide the same functionality
of L-records. Both types of records support the same set of operations in
Pallene. The difference between these two types of records is the underlying
representation and how Lua interprets them. C-records are not Lua tables like
L-records. Instead, the Pallene compiler should use C structs as the underlying
representation for C-records. Nonetheless, Pallene can send and receive C-
records from Lua and Lua should be able to manipulate the fields of C-records.

The code that our generates uses the Lua full userdata type to represent
C-records. Native fields stay in the memory part of the full userdata. Our
compiler creates a C struct to arrange these fields in the memory part. For
instance, assume a C-record with the following type definition:

C{
a: integer,
b: float

}

Our compiler declares the following C struct to manipulate the fields in the
memory part of the userdata:
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static inline TValue *pallene_getstr(
Table *t, TString *key, int *pos)

{
if (*pos < sizenode(t)) {

Node *n = gnode(t, *pos);
if (keyisshrstr(n) && eqshrstr(keystrval(n), key))

return gval(n);
}
int currpos = lmod(key->hash, sizenode(t));
Node *n = gnode(t, currpos);
for (;;) {

if (keyisshrstr(n)
&& eqshrstr(keystrval(n), key)) {
*pos = currpos;
return gval(n);

}
else {

int nx = gnext(n);
if (nx == 0)

return (TValue *)luaH_emptyobject;
currpos += nx;
n += nx;

}
}

}

Figure 5.4: Function that obtains the slot of the passed key in the hash table
t. This function uses the inline-cached position.

struct {
lua_Integer a;
lua_Number b;

}

Since our compiler bypasses the Lua-C API, the code has access to the
internal pointers of the interpreter data structures. However, our compiler
cannot store pointers to heap objects in the memory part of the userdata since
the Lua garbage collector would not be able to reach these objects. Eventually,
the collector would free these objects and the pointers in the memory part
would become invalid. Therefore, the code places the fields that store heap
objects in the user values array. The garbage collector traverses this array so
there is no risk of the values being freed.

Figure 5.5 presents a C-record that contains both native and heap-objects
fields. The fields id and age are native since they are plain integers. The fields
name and grades are heap objects since they store a Lua string and a Lua
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type Student = C{
id: integer,
name: string,
age: integer,
grades: {integer},

}

Figure 5.5: A C-records that contains both native and heap-object fields.

table respectively. Our compiler stores the native fields in the memory part
of the userdata and the heap-object fields in the user values array. For this
particular C-record, our compiler declares the following C struct for arranging
the native fields:

struct {
lua_Integer id;
lua_integer age;

}

The fields name and grades are stored in the positions 1 and 2 of the user
values array.

Manipulating C-Records in Lua

Lua code cannot manipulate the fields of C-records directly since userdata
values are opaque in Lua. It is possible to modify this behavior with Lua
metatables, which allow programmers to extend the behavior of the Lua
interpreter. A metatable is a Lua table that contains a set of metamethods.
When the Lua interpreter can not perform an operation, the interpreter
looks up whether there is a metamethod in the metatable of the object
for this operation. Then, the interpreter calls the metamethods to perform
the operation. Programmers can associate metatables with different kind of
Lua values, but we are interested only to associate metatables with userdata
objects.

For instance, the interpreter can not perform an addition over two
userdata objects that do not have a metatable. However, the interpreter can
perform the addition if one of the objects has a metatable with the metamethod
add. The Lua interpreter calls the metamethod add passing the two userdata
objects as arguments. In this case, the result of the addition is the return value
of this metamethod.

Lua provides several hooks that call metamethods that extends the
behavior of the interpreter. In the case of C-records, we are interested in
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the index and newindex metamethods. When Lua tries to access a key in a
userdata, the Lua interpreter looks for the index metamethod. Assume the Lua
code u[k], where u is a userdata and k is a value that represents the key. When
performing this operation, the Lua interpreter looks up for the metamethod
index in the userdata’s metatable. If the interpreter finds the metamethod,
the interpreter calls it passing the userdata and the key as arguments. The
return of the operation is the return of the metamethod.

The newindex metamethod is similar to index. When Lua assigns a value
to a key of an userdata, the interpreter looks up for the newindex metamethod.
Assume the Lua code u[k] = v, where u is a userdata, k is the key, and v is the
value being assigned. The interpreter looks up for the metamethod newindex
and calls it passing these three values. This operation has no return values.

Our compiler creates a unique metatable for each C-record type declara-
tion in a Pallene module. The code creates the metatables when the interpreter
loads the Pallene module. Later, the code associates the metatable to C-record
object when the object is constructed. The C-record metatables contain the
index and newindex metamethods so Lua code can manipulate the fields in
the C-record. These metamethods are C functions that the Lua interpreter can
call.

When the Lua interpreter calls the metamethods index and newindex, it
passes a dynamic value representing the key of the entry to the metamethod.
The C-record metamethods have to map this dynamic value to the actual
position of the field in the C-record. It is even possible that the passed key is
not a field in the C-record.

The C-record metamethods use a Lua table as a dynamic dispatcher. This
table maps the string with the name of the field to a function that performs
the expected action for the given field. In the index metamethod, the action
is retrieving the value from the field. In the newindex metamethod, the action
is setting the value to the field.

Both index and newindex metamethods contain an unique dispatch
table. When the interpreter calls one of these metamethods, the metamethod
looks up in the table for the function that performs the operation for the given
field. If the table does not contain a function for the given key, it means that
the Lua code is trying to access a field that does not exist in the C-record. If
that is the case, the metamethod triggers a Lua error. Finally, the metamethod
calls the function to perform the expected action for the given field.

Figure 5.6 presents the index metamethod for Pallene’s C-records. In the
first line of the metamethod, the code retrieves the userdata object from the
Lua stack. Then, the code retrieves the key from the stack and verifies whether
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static int crecord_index(lua_State *L)
{

Udata *u = uvalue(s2v(L->ci->func + 1));
TValue *v = s2v(L->ci->func + 2);
if (!ttisstring(v)) {

crecord_nonstr_error(L, rawtt(v));
}
Table *t = hvalue(u->metatable->array);
const TValue *f = luaH_getstr(t, tsvalue(v));
if (!ttisfunction(f)) {

crecord_index_error(L, svalue(v));
}
void (*getfield)(Udata *, TValue *) =

(void (*)(Udata *, TValue *))fvalue(f);
getfield(u, v);
return 1;

}

Figure 5.6: Index metamethod for C-records.

the key is a string by calling the macro ttisstring. If the key is not a string
then the code triggers a Lua error by calling crecord_nonstr_error. Later,
the code obtains the dispatcher table at the first position in the array part of
the userdata’s metatable. The metamethod calls the function luaH_getstr to
look up the specific function in the dispatcher table. If the code does not find
the function then the code triggers an error by calling crecord_index_error.
Finally, the code obtains the pointer to the specific function and calls it passing
the userdata and the slot that will receive the return value.

Figure 5.7 shows the functions that our compiler generates for the field id
of the C-record student. In the top, the function index_student_id reads the
integer value from the field id. In the first line of the function, the code obtains
the pointer to the memory area of the userdata. Then, the code sets the output
Lua value by calling the function setivalue. In the bottom, the function
newindex_student_id writes an integer value to the field id. First, it checks if
the type of the passed value v is an integer by calling the function ttisinteger.
If the value is not an integer, the code calls the function c_record_type_error
which triggers a Lua error. Finally, the code obtains the memory part and
assigns to the field the integer value obtained with the function ivalue.

5.4
Possible Type-Verifications Approaches For a Pallene Compiler

The functions that Pallene export to Lua follows the Lua calling con-
vention. When calling a Pallene function, the Lua interpreter pushes the ar-
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static void index_student_id(Udata *u, TValue *out)
{

struct student *s = getudatamem(u);
setivalue(out, s->id);

}

static void newindex_student_id(
lua_State *L, Udata *u, TValue *v)

{
if (!ttisinteger(v)) {

c_record_type_error(L, "id");
}
struct student *s = getudatamem(u);
s->id = ivalue(v);

}

Figure 5.7: Generated functions that perform the index and newindex opera-
tions for the field id.

guments to the Lua stack and expects the results in the stack. Since Lua is a
dynamic language, the values in the Lua stack have their types defined only
during runtime. Pallene has to verify whether the values that Lua passed com-
ply with the static type annotation before using them. If the type does not
comply with the type annotation, Pallene triggers a runtime type error.

Pallene cannot perform manipulate the values it receives from Lua
without verifying their types first. Otherwise, Pallene would not be a type-
safe language. For instance, if Pallene code expects an array then the code has
to verify whether the value is a table first. If Pallene does not perform this
verification and Lua passes an integer, Pallene would interpret this integer as
a pointer to a table. Most likely, interpreting this integer as a pointer would
result in an invalid-memory-access error.

For verifying primitive types such as booleans, numbers, and strings, the
code just needs to compare the tag of the value to the one it expects. If the
tag does not correspond to what Pallene expects, the code triggers a runtime
type error. However, verifying the types of table-based data structures is more
complicated than verifying the types of primitive types. The first step is to
verify whether the value is a table but this not enough to verify the whole
type. Eventually, the code should also verify whether the tags of the entries
comply with the type annotation.

As we explained in Chapter 3, the code can verify the types of the values
at any point of the Pallene function. There is a range of possibilities for the
moment that the code can verify the type of Lua dynamic values. One extreme
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is eager verification: the code verifies the whole type of all Lua values in the
entry of the Pallene function. The other extreme is lazy verification: the code
verifies the type of the Lua value on demand, just before the code uses the
value.

5.4.1
Eager Verification

With eager verification, the code just needs to verify the type of a tagged
value once during the whole function call. After the code verifies the type of all
arguments, they should remain well-typed until the Pallene function returns.
Pallene by itself cannot produce a value that does not correspond to the type
annotation of the variable. Runtime type errors only occur if Lua passes a
value with the incompatible type to Pallene.

The Pallene compiler can take advantage when the code verifies the types
eagerly. Once Pallene verifies the types, Pallene code can move all variable from
the Lua stack to the C variables. After the code moves the values to C variables,
the C compiler can better optimize the code it generates. For instance, the C
compiler can assign these variables directly to machine registers. By using
machine registers, the code becomes more efficient since there is no need to
retrieve these variables from memory each time they are used.

However, eager verification is not an efficient approach because of table-
based types such as arrays and L-records. The code would have to verify the
types of all entries of the table to confirm whether the value complies to the
respective type annotation. Parts of these type verifications are unnecessary
if the Pallene function does not access all the table entries. Verifying all the
elements of a table can increase the asymptotic complexity of the function.

For example, Figure 5.8 presents a Pallene function that performs a
binary search. If the array contains the expected element, the function returns
its position. The algorithm in this function has complexity O(log n), where n is
the size of the array. However, Pallene code with eager type verification would
traverse the whole array to verify whether each entry is indeed a float. The
complexity of this implementation would be O(n), which is much worse than
the complexity of the algorithm.

Besides being able to verify the type of values at any moment, Pallene
does not need to verify the type of values it does not use. The code can skip type
verifications that are not necessary. In the binary search function of Figure 5.8,
the code does not need to verify all the elements of the array. The code just
needs to verify the log n entries of the array it accesses. This line of thought
leads to the other extreme implementation of type verification.
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function binary_search(xs: {float}, v: float): integer
local lo: integer = 1
local hi: integer = #xs + 1
while lo < hi do

local mid = (lo + hi) // 2
if xs[mid] < v then

lo = mid + 1
else

hi = mid
end

end
return lo

end

Figure 5.8: Pallene function that performs a binary search over an array of
floats.

It is worth noting that the eager verification is not possible for type
systems that are more complex than the current Pallene type system. For
instance, suppose a type system with a function type for Lua tables. Knowing
the actual type of the function is not computable since Lua functions are
dynamic. Even after calling the function, there might exist another input that
makes the function return a value of invalid type.

5.4.2
Lazy Verification

With lazy verification, the code verifies the type of values just before they
are used. Therefore, if Pallene does not use the value, the code does not verify
the type of the value. More importantly, Pallene does not completely verify
the type of table-based data structures. Instead, the code just verifies whether
the value is a table and the types of the elements the code retrieves from the
table. For instance, in the binary search function with lazy verification, the
code only verifies the type of log n elements that it accesses.

Notice that with lazy verification, Pallene code only verifies the types of
tables partially. If Lua passes an array with mixed floats and integers to the
binary search function, Pallene might not trigger a type error. Even though
the type of the array is wrong, Pallene code might not access the elements
with integer types. This behavior is not an issue because it does not break the
gradual guarantee property of Pallene.

Differently from eager verification, lazy verification is a viable implemen-
tation for our compiler. However, lazy verification brings some performance
drawbacks to the code that the Pallene compiler generates. The code verifies
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the type of values more than once if Pallene uses the value again. Moreover,
lazy verification requires Pallene code to keep variables in the Lua stack in-
stead of in C variables. The C compiler would not be able to map the Lua
values to machine registers like C variables.

5.5
Type Verification in The Pallene Compiler

The code generated by our compiler combines both lazy and eager
verification approaches. The code performs the first step of type verification
eagerly. In this step, the code compares the tag of the value with the one it
expects from the type annotation. For values of primitive types, comparing the
tag is enough to verify whether the value complies with the type annotation.
The code moves the value to C variables after verifying the tag.

For table-based types, the code verifies the tags of the entries lazily.
Only when Pallene accesses the entry that the code verifies whether the tag
corresponds to the annotation. After verifying the tag, the code moves the
value in the entry to a C variable. Notice that the code does not verify the
whole type of the entry, it just verifies the tag. If the value in the entry is
another table, the code still has to verify the tags of the entries in this other
table.

The code moves the value to C variables even if Pallene does not
manipulate the value directly. For instance, if Pallene just copies an entry
of an array to another array, the value is not actually used. Nonetheless, the
code moves the value to a C variable before storing it the other array.

The code does not verify the types of entries it does not access since the
type verification is lazy. Lua may pass a table with entries that do not convey
with a given type annotation. If Pallene does not access these elements, the
code does not trigger a runtime error. However, the programmer should not
rely on this behavior since this is an implementation detail of our compiler.
The Pallene language specification states that the code might trigger a type
error even if the code does not access the entry.

Lua returns nil when the programmer tries to access an entry that is not
present in a table. In Pallene, the behavior of the code is similar to Lua when
trying to access an absent entry of a table. If the expected entry is not present
in the table, the type of the entry should be nil. The code triggers a type error
since nil should be different from the expected type. Notice that Pallene’s type
system does not contain the type nil.

The type verification for C-records is different from L-records. When Lua
writes to a field of the C-record, the newindex metamethod verifies the tag of
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the value being written. Lua code cannot write a value with an incompatible
tag to a field of a C-record. Therefore, the code does not need to verify again
the tags of the fields inside a C-record. However, Lua can still write a table
with an incompatible type to a record field. The code has to verify the tags of
the entries of this table.

Verifying the tag of a C-record is not enough to verify whether its type
conveys with the type annotation. The tag of a C-record just informs that the
value is a userdata but not what is inside this userdata. All userdata objects
share the same tag so this verifying it not enough to identify which C-record
the object is. To verify whether the userdata correspond to the expected C-
record, the code compares the metatable of the userdata with the metatable
of the expect C-record. Each C-record type has its own metatable, so we can
use these metatables to verify the type of the userdata. The code stores the
metatable of expected C-records in the upvalues arrays of the Pallene functions.
Then, when the code needs to verify the type of a C-record, the code recovers
the metatable from the upvalues array.

Our compiler obtains the benefits of both verification approaches by
combining them. Comparing the tag eagerly allows the code to move the values
from the Lua stack to C variables. However, verifying eagerly the whole type of
tables is not efficient. For that reason, the code verifies the type of the elements
of tables lazily.

Once our compiler moves the Lua variables to C variables, part of the
code generation is straight forward. Our compiler translates most of Pallene
statements and expressions over primitive values to the equivalent ones in C.
For instance, an addition in Pallene becomes an addition in C; an if-then-
else statement in Pallene becomes an if-then-else statement in C. The major
challenge in our compiler is generating C code that manipulates Lua data
structures.

5.6
Pallene Internal Calling Convention

Once Pallene verifies the tag of a variable, the code does not need to
perform this task again. The code cannot assign a value with an incompatible
tag to a variable in C variables. We can apply this same principle to function
calls that Pallene performs. The code cannot call a function passing arguments
with incompatible tags. Hence, a Pallene function does not need to verify the
tag of the arguments if the callee is another Pallene function.

The code that our compiler generates uses a different calling convention
for calls between Pallene functions. Instead of using the Lua stack, the code

DBD
PUC-Rio - Certificação Digital Nº 1721787/CA



Chapter 5. Pallene Implementation 52

calls other Pallene functions using C parameters. When calling a Pallene
function, the code verifies the tag of these parameters before the call.

Pallene functions still need to support the Lua calling convention so
the interpreter can call these functions. To feature both calling conventions
simultaneously, the functions that our compiler generates have two entry
points. One entry point uses the Lua calling convention and the other uses the
Pallene calling convention. In the generated C code, each entry point becomes
a different C function.

The Lua entry point is a C function that follows the Lua calling
convention. This function verifies the tags of the received parameters and
moves these parameters from the Lua stack to C variables. Then, the Lua entry
point calls the Pallene entry point passing the parameters in C. The Pallene
entry point receives the parameters in C and executes the actual code for the
function. Other Pallene functions can call the Pallene entry point directly to
avoid unnecessary tag verifications.

Figure 5.9 presents the C code that our compiler generates for a function
that adds two integers. In the top, the function add_pallene represents the
Pallene entry point of the function add. This function receives two integers,
performs the addition, and returns the result through C. In the bottom, the
function add_lua represents the Lua entry point for the function add. In the
first line of the function, the code obtains the pointer to the base of the Lua
stack. The based of the stack contains the function (Pallene C Closure) followed
by the Lua parameters. In the following line, the code obtains the pointer to
the first parameter in the Lua stack. Then, the code calls ttistinger to verify
whether the parameter is an integer as the function expects. If the value is not
an integer, the code calls the function argument_type_error that triggers
a Lua error. The code repeats this process to the second parameter. After
verifying the types, the code moves the integer values from the Lua stack to C
variables by calling the macro ivalue. Later, the code calls the Pallene entry
point passing the parameters through C. With the return of the Pallene entry
point, the code sets the Lua value above the top of the Lua stack using the
macro setivalue. The function api_incr_top increases the stack size by 1,
incorporating the value that was above to the stack. Finally, the Lua entry
point returns 1 in C, which is the number of values it left in the top of the Lua
stack.

There is a consideration that our compiler has to make when moving
values out of the Lua stack. The garbage collector cannot reach objects that
are neither in the Lua stack or in the Lua global environment. If the garbage
collector performs a step and the object is unreachable, the GC might collect
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static lua_Integer add_pallene(lua_State *L,
lua_Integer x1, lua_Integer x2)

{
return x1 + x2;

}

static int add_lua(lua_State *L)
{

StackValue* x1 = L->ci->func;
TValue* x2 = s2v(x1 + 1);
if (!ttisinteger(x2)) {

argument_type_error(L, "a", LUA_TNUMINT);
}
TValue* x3 = s2v(x1 + 2);
if (!ttisinteger(x3)) {

argument_type_error(L, "b", LUA_TNUMINT);
}
lua_Integer x4 = ivalue(x2);
lua_Integer x5 = ivalue(x3);
lua_Integer x6 = add_pallene(L, x4, x5);
setivalue(s2v(L->top), x6);
api_incr_top(L);
return 1;

}

Figure 5.9: The Pallene entry point and the C entry point for a function that
add two integers.

the object. The code cannot access objects after the GC collects them. The
code needs to be aware of this interaction with the garbage collector to behave
correctly.

To make sure that the Lua garbage collector can reach the values in
Pallene, our compiler copies the values from C variables to the Lua stack.
With this approach, the code can still keep all heap objects in C variables.
The code copies the unreachable objects back to the Lua stack before the
garbage collector performs a step. Then, the garbage collector can reach all
objects that the code uses. After the garbage-collection step is over, the code
removes the objects from the Lua stack so it does not need to keep track of
two different stacks at the same time.
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6
Performance Evaluation

As we discussed throughout this dissertation, the primary goal of Pallene
is to aid programmers that seek better performance in Lua. Our hypothesis
is that Pallene’s performance speedup to be on par with the speedup that
LuaJIT achieves. We use LuaJIT as a target because it is the state of the
art in optimizing Lua’s performance. To test this hypothesis, we measured the
running time of eight benchmark programs. In this chapter, we present and
analyze the results of this experiment.

A secondary objective of this chapter is to compare the performance
of the two types of Pallene records (L-records and C-records). These two
types of records offer a similar functionally but they feature two different
representations. We expect C-records to be faster than L-records in Pallene,
given that C-records are represented by static data structures. On the other
hand, in the Lua interpreter, we expect C-records to be slower than Lua tables
due to the overhead of metatables.

For each benchmark, we implemented a C version that uses the Lua-
C API to manipulate Lua’s data structures. Then, we measured the running
time of these C programs to compare to Pallene. In this chapter, we use these
measurements to analyze the overhead present in the API. We anticipate that
these C programs are strictly slower than Pallene because Pallene bypasses the
API to access the interpreter internals. In some cases, the overhead of the API
makes the C program slower even than Lua-equivalent program executed by
the interpreter.

We performed all our experiments in a Linux machine with a processor
Intel Core i5-7600 (4.1GHz) and 8 GB of RAM. We used the version 5.4-
work1 of the Lua interpreter, the version 2.1.0-beta3 of LuaJIT, and the
version 7.2.1 of GCC. In all of our experiments, we measured the running
time of the benchmark program 10 times and present the arithmetic mean of
these measurements. The standard deviation observed in our experiments was
at most 1% of the mean for a given benchmark. Because the deviation was
small, we decided to suppress it from the tables we present in this chapter. In
our analysis, we disregard differences that are in the same order of magnitude
of the deviation.
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6.1
Benchmarks Specification

For our main experiment, we selected eight benchmark programs that
implement common algorithms in a straight-forward manner. We did not tweak
any of the programs to perform better in a particular execution engine (the
Lua interpreter, LuaJIT, or Pallene). The major focus of this experiment is
measuring the performance of manipulating Lua’s data structures. For the
benchmarks that use records, we also tested a Pallene version that uses
C-records instead of L-records. The following list describes the benchmark
programs that we used in our experiment:

– Binsearch performs an iterative binary search over an array of random
integers. The size of the array is 106 and the program repeats the search
106 times.

– Centroid computes the centroid of an array of 2D points. Each point
is represented by a record. The size of the array is 105 and the program
repeats the computation 5 · 105 times.

– Conway simulates the Conway’s Game of Life, which is a cellular
automaton. The canvas is represented by an array of boolean arrays. The
size of the canvas is 40 by 80 and the program performs 2000 simulation
steps.

– Mandelbrot computes the Mandelbrot set and generates an image.
Each complex number is represented by a record. The size of the
generated image is 256 by 256.

– Matmul multiplies two matrices of floats. Each matrix is represented by
an array of arrays of floats. The size of both matrices is 800 by 800.

– N-body performs an N-body simulation, which is a simulation of a
dynamic system of particles. Each body is represented by a record with
the body’s coordinates, velocity, and mass. This simulation has 5 bodies
and the program performs 107 simulation steps.

– Queens solves all the possible configurations of a variant of the 8-queens
puzzle. In this variant, the chessboard size is 13 by 13. The chessboard
is represented by a single array of integers where each array’s position
contains the column where the queen was placed for that line.

– Sieve computes a list of primes with the sieve of Eratosthenes algorithm.
The array of primes is represented by an array of integers. The benchmark
program also uses a temporary array of booleans to represent the sieve.
The benchmark goes through the first 105 numbers and repeats the
computation 103 times.
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For each benchmark, we chose a large enough input so the program
takes more than 100 milliseconds to run. Programs with linear and sub-linear
complexity run extremely fast even with a large input. For these programs,
we repeated the execution of the algorithm several times inside a loop. By
increasing the running time, we reduce the impact of the noise caused by
external factors, such as the operating system.

Notice that by increasing the running time, the warm-up of LuaJIT
also becomes negligible. The warm-up is the period of time that the JIT
compiler profiles the code and compiles it into machine code. However, LuaJIT
is well known for having an extremely fast warm-up (PALL, 2005b). For our
benchmarks, the warm-up was less than a millisecond which is in the same
order of magnitude of the noise generated by external factors. Hence, we would
not be able to measure the warm-up overhead even with a small input size.

6.2
Comparing Pallene to LuaJIT and Lua

Table 6.1 presents the results of our experiments. Each line presents the
mean running time for a given benchmark and execution engine. Notice that
the last column of the table shows the time of the given execution engine
normalized by the time Lua took for that benchmark. Figure 6.1 aggregates
these normalized results in a single chart.

By observing the results, we noticed that Pallene’s speedup was in
the same order of magnitude of LuaJIT’s speedup for five benchmarks. For
Binsearch and Conway, Pallene performed significantly better than LuaJIT.
On the other hand, LuaJIT performed significantly better than Pallene for
Mandelbrot. In the following paragraphs, we discuss the results of each program
individually.

Binsearch For this benchmark, Pallene took 35% of the time of LuaJIT. The
binary search algorithm has an unpredictable branch that leads to two distinct
paths, depending on whether the current element is greater or smaller than
the element being searched for. This unpredictable branch is particularly bad
for LuaJIT because of the nature of tracing-JIT compilation.

By using the Loom debugging tool (GIRALDEZ, 2017a), we could in-
spect the traces that the tracing-JIT compiler generated. If the current ele-
ment is smaller than the expected one then the code sticks to the main trace;
otherwise, the code jumps to a side-trace. Jumping to a side-trace is an expen-
sive operation since the compiler only optimizes the code inside of a trace. The
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code has to jump to the side-trace as it is the only way to perform branching
in a tracing-JIT.

The slowdown caused by an unpredictable branch problem is very partic-
ular to tracing-JIT compilers. Pallene does not suffer from this issue because
it optimizes the loop as a whole; branching is not an expensive operation in
Pallene. Method-based JIT compilers do not suffer from this kind of issue as
well.

Centroid For this benchmark, LuaJIT took 53% of the time of the Pallene
version with L-records. By inspecting the code generated by LuaJIT, we
observed that LuaJIT performs an optimization similar to the inline caching
in the Pallene compiler. LuaJIT code looks up a specific position first when
accessing a field from a record. However, this cached position becomes a
constant in the code instead of a variable. Moreover, LuaJIT also hard-codes
the pointer to the string key instead of retrieving it in every access. When
accessing a field in a table, Pallene still have to access variables to obtain
the cached position and the pointer to the string key. Pallene is slower than
LuaJIT because an ahead-of-time compiler cannot perform the optimizations
that a JIT compiler does. On the other hand, the Pallene version that uses
C-records took 71% of LuaJIT’s time. When obtaining a field from a C-record,
Pallene already knows the exact position of the field during compile time.

Conway For this benchmark, the speedup of Pallene is not in the same order
of magnitude of the speedup for the previous benchmarks. By measuring
each part of the program separately, we discovered that the bottleneck of
this benchmark is string concatenation. Each string concatenation generates a
temporary string object that soon becomes garbage. Since Pallene uses the Lua
garbage collector, there was not room for Pallene to improve the performance
of Lua for this benchmark.

We were initially surprised to find that LuaJIT’s performance was worse
than the Lua interpreter for Conway. Our main hypothesis is the fact that
LuaJIT uses an incremental garbage collector and Lua 5.4 uses a generational
garbage collector. The performance gain of the generational garbage collector
most likely compensated the performance gain of LuaJIT. Table 6.2 presents
a comparison with Lua using the incremental mode for the garbage collector.
When compared to Lua with the incremental mode, LuaJIT also improves the
performance of the program.
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Benchmark
Program Execution Engine Time

in seconds

Time
normalized

by Lua

Binsearch
Lua 0.71 1.00
LuaJIT 0.26 0.37
Pallene 0.09 0.13

Centroid

Lua 8.53 1.00
LuaJIT 1.27 0.14
Pallene (L-records) 2.37 0.27
Pallene (C-records) 0.91 0.10

Conway
Lua 1.63 1.00
LuaJIT 1.89 1.16
Pallene 0.85 0.52

Mandelbrot

Lua 0.84 1.00
LuaJIT 0.013 0.01
Pallene (L-records) 0.54 0.64
Pallene (C-records) 0.29 0.35

Matmul
Lua 7.53 1.00
LuaJIT 0.56 0.07
Pallene 1.07 0.14

N-body

Lua 15.6 1.00
LuaJIT 1.48 0.09
Pallene (L-records) 2.55 0.16
Pallene (C-records) 1.12 0.07

Queens
Lua 10.7 1.00
LuaJIT 1.29 0.12
Pallene 1.09 0.10

Sieve
Lua 3.75 1.00
LuaJIT 0.95 0.25
Pallene 0.90 0.24

Table 6.1: Results of the main experiments that compare the Lua interpreter,
LuaJIT, and Pallene.

Execution Engine Time
in seconds

Time normalized
by Lua incremental

Lua incremental 2.24 1.00
Lua generational 1.63 0.72
LuaJIT 1.89 0.84

Table 6.2: Comparison of Lua with incremental GC, Lua with generational
GC, and LuaJIT for Conway.
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Execution Engine Time
in seconds

Time
normalized
by Pallene

Pallene 1.07 1.00
LuaJIT 0.56 0.52
Pallene (BCE) 0.82 0.77

Table 6.3: Comparison of LuaJIT and a hand-optimized version of the Pallene
code for Matmul.

Mandelbrot For this benchmark, Pallene did not improve the performance
of Lua as we would like. Just like Conway, the bottleneck of this benchmark
is memory allocation and garbage collection. Mandelbrot performs several
operations over complex numbers represented by records. The result of each
operation is a new complex number that soon becomes garbage. Since the
bottleneck in Mandelbrot is the creation of temporary objects, Pallene’s
speedup was not as significant as in the other benchmarks.

On the other hand, LuaJIT took only 1% of the time of the Lua
interpreter. By inspecting the code that LuaJIT generates, we discovered that
it archived this performance by using an allocation-sinking optimization. In
this optimization, the compiler allocates temporary objects in the stack instead
of allocating them in the heap. This optimization is only possible when the
compiler detects that the object is only used locally. This is an optimization
that the Pallene compiler can perform but we did not have time to implement.

Matmul For this benchmark, Pallene’s speedup was in the same order of
magnitude of LuaJIT’s speedup. However, LuaJIT took half of the time of
Pallene. By inspecting the LuaJIT code, we noticed that LuaJIT performs a
bound-checking-elimination (BCE) optimization. Instead of verifying whether
each element is in the array part in every loop iteration, the code verifies
whether the loop limit is smaller than the size of the array part. If the loop
limit is greater than the array size then the trace handles the execution back
to the interpreter.

To test the impact of BCE, we performed this optimization by hand over
the C code that the Pallene compiler generates. In the hand-optimized version,
the code verifies the size of the array part only once in a loop. If the size of
the array part is smaller than the loop limit then the code grows the array
part and moves all the elements from the hash part to the array part. (We
are currently developing this optimization in the Pallene compiler.) Table 6.3
presents the running time of the hand-optimized version of the Pallene code
for Matmul.
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Matrices
Size Repetitions Pallene-LuaJIT

Ratio
Execution

Engine Time LLC miss

1000 by 1 1.66 Pallene 1.78 51.8%
1000 LuaJIT 1.07 22.6%
800 by 1 1.46 Pallene 0.82 34.3%
800 LuaJIT 0.56 15.2%
600 by 2 1.15 Pallene 0.54 14.9%
600 LuaJIT 0.46 6.1%
400 by 8 0.93 Pallene 0.50 1.2%
400 LuaJIT 0.53 0.6%

Table 6.4: Comparison of LuaJIT and Pallene when varying the sizes of the
matrices for Matmul.

Even when performing the BCE optimization, Pallene was still slower
than LuaJIT. By investigating further this performance difference, we noticed
that the last-level-cache (LLC) miss of Pallene was above 51% while it
was 22% for LuaJIT. (We measured the LLC miss using the Linux’s perf
tool (DE MELO, 2010).) Our hypothesis is that the performance difference
between Pallene and Lua was due to the LLC-miss rate.

To test our hypothesis, we performed another experiment using matrices
of different sizes. Given that smaller matrices require less memory, the LLC
miss should be lower for these matrices. In this experiment, we used the hand-
optimized version of the Pallene code. For matrices of size smaller than 800
by 800, we repeated the multiplication in a loop to maintain the running time
above 100 milliseconds.

Table 6.4 presents the results for this experiment. As expected, the LLC-
miss rate is proportional to the size of the matrices. Moreover, the results of this
experiment indicate that our hypothesis was correct. When the LLC-miss rate
is near 1%, the performance of Pallene is better than LuaJIT’s performance.

The LLC miss was smaller in LuaJIT for larger matrices be-
cause LuaJIT uses a compact representation for Lua values called NaN-
tagging (PALL, 2009). With this representation, a Lua value is represented
solely by a double floating-point number. LuaJIT encodes values that are not
floating-point numbers as NaNs (not a number); the value itself is stored in
the mantissa bits of the floating-point. To access non-number values, LuaJIT
uses a bitmask to extract the value from the mantissa.

Even though NaN-tagging reduces memory usage, this representation
also has a major limitation. It is only possible to store non-floating-point values
that are smaller than the size of the mantissa, which is 53 bits for doubles of
the IEEE 754 standard. Due to this limitation, LuaJIT does not support 64 bit
integers, breaking the compatibility with Lua 5.3 and onwards.
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N-body This benchmark is very similar to Centroid; both benchmarks
perform arithmetic operations over arrays of records. For N-body, LuaJIT
took 58% of the time of the Pallene version with L-records. One of the reasons
that LuaJIT was faster is the one presented for Centroid: LuaJIT hard-codes
the cached positions and the pointers to the string keys. Besides optimizing the
field access, LuaJIT also unrolls the inner loop that iterates over the bodies’
array. Instead of performing a loop, LuaJIT creates a linear trace that executes
the code of the loop five times (one for each element of the array). This kind
of optimization is only possible in a JIT compiler since the size of the array is
only known during runtime. Even with the loop unrolling, the Pallene version
with C-records was faster than LuaJIT, taking 76% of the time of LuaJIT.

Queens For this benchmark, Pallene took 84% of the time of LuaJIT. To
explain why LuaJIT was slower, we need first to explain what the benchmark
does to compute the possible solutions of the queen puzzle. The benchmark
iterates over every line of the chessboard and it tries to insert a queen in one
of the positions of that line. When trying to insert a queen, the benchmark
loops through the previous positions to checks whether the current position is
safe from another queen attack. For every previous position, the code checks
whether there is a queen in it and whether the position is in one of the two
diagonals or in the same column. All these checks performed in the innermost
loop are branches that become side-traces in LuaJIT. Like Binsearch, these
branches are unpredictable, leading to several jumps between side-traces during
the benchmark execution. Pallene performs better because it optimizes the loop
as a whole.

Sieve For this benchmark, the results of Pallene and LuaJIT were very
close; Pallene took 95% of the time of LuaJIT. However, by inspecting the
LuaJIT code, we noticed that LuaJIT also performs the BCE optimization for
Sieve. We performed this optimization by hand over C code that the Pallene
compiler generates to see how further we can push Pallene performance. In
this experiment, the hand-optimized version took 0.77 seconds, which is 81%
the time of LuaJIT.

6.3
Comparing C-Records with Lua Tables

To compare Pallene C-Records with Lua tables, we use Centroid, Man-
delbrot, and N-body benchmarks from the previous section. Table 6.1 already
presents the running time of Pallene using C-records and Lua tables (repre-
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Benchmark Program Time
in seconds

Time normalized by
Lua with tables

Centroid 26.9 3.16
Mandelbrot 1.44 1.71
N-body 70.6 4.52

Table 6.5: Comparison of Lua using C-records for Centroid, Mandelbrot, and
N-body benchmarks.

sented as L-records). This table also presents the running time of Lua using
tables to represent the records. What is missing for our analysis is the mea-
surement of a Lua version of these benchmarks using C-records.

We performed another experiment with a version of these benchmarks
where Lua uses C-records instead of tables. In this experiment, the Lua
code performs all the computations and Pallene is only called to create the
C-records. Table 6.5 presents the running time of each benchmark for this
experiment. The third column of the table presents the running time of each
benchmark normalized by the Lua version using tables.

Figure 6.2 presents two charts that aggregate the results of Table 6.1
and Table 6.5. As expected, manipulating C-records in Pallene is faster
than manipulating tables, and manipulating tables in Lua is faster than
manipulating C-records. For all benchmarks, the overhead of using C-records
in Lua is similar to the overhead of using tables in Pallene. For Mandelbrot,
the overhead was less significant since the bottleneck was in memory allocation
and garbage collection.

Since C-records are represented by static data structures (userdata), the
Pallene compiler can generate more efficient code for them. When manipulating
a C-record, the Pallene compiler already knows the offset of the field during
compile time. Moreover, the code does not need to verify the tag of the field.
On the other hand, when manipulating L-records, Pallene has to recover the
key from the closure, look up the entry in the hash table, and verify the tag
retrieved from the table. All these operations add up making L-records slower
than C-records in Pallene.

In Lua, C-records are slower than tables because of the metatable
indirection. When manipulating a C-record, the Lua interpreter has to look up
the respective metamethod, call this metamethod, and then perform another
look up in the dispatcher table. Moreover, when writing to a field in a C-record,
the metamethod verifies whether the tag of the value conveys to the type of the
field. When manipulating a Lua table, the interpreter just needs to perform a
single lookup.
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Benchmark Program Time
in seconds

Time normalized
by Lua

Binsearch 0.24 0.34
Centroid (tables) 14.7 1.72
Centroid (userdata) 16.7 1.96
Conway 1.47 0.90
Mandelbrot (tables) 1.16 1.37
Mandelbrot (userdata) 0.58 0.69
Matmul 9.61 1.27
N-body (tables) 24.0 1.53
N-body (userdata) 6.09 0.38
Queens 2.98 0.27
Sieve 3.58 0.95

Table 6.6: Results of C programs using the Lua-C API for the benchmarks of
Section 6.1.

6.4
Evaluating the Performance of the Lua-C API

We expect the Lua-C API to introduce a runtime performance overhead
when manipulating Lua’s data structures. To test this hypothesis, we per-
formed an experiment with C programs that use the Lua-C API. For each
benchmark program of Section 6.1, we implemented an equivalent version in
C that uses the Lua-C API to manipulate Lua’s data structures. All these
C programs use Lua tables to represent arrays. For the benchmarks that use
records, we implemented two versions of each: one using tables and another
using userdata objects to represent the records.

Table 6.6 presents the results we obtained for the C programs that use
the Lua-C API. The second column presents the running time of the given
program and the last column presents the time normalized by the time the
Lua interpreter took. The time the Lua interpreter took is the one presented
on Table 6.1.

Figure 6.3 presents a chart comparing the running time of C-API, Pallene
and Lua. As expected, all programs using the C-API are strictly slower
than Pallene. Compared to the Lua interpreter, the performance of the C-
API varies greatly. There are programs where migrating to C provided a
speedup compared to the Lua interpreter. However, there are programs that
the performance of C is equivalent or even worse than the interpreter.

For Binsearch, the C-API performed better than the Lua interpreter,
taking 34% of the time of the interpreter. However, Pallene was still consid-
erably faster than the C program, taking 38% of the time of the C program.
We observe a similar pattern for the Queens benchmark, where the Lua-C
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API is faster than the interpreter but Pallene is faster than the Lua-C API.
For Conway and Sieve, migrating from Lua to C improved the performance
of the program only by 10% and 5% respectively. For Matmul, the C pro-
gram was even slower than the Lua interpreter, taking 127% of the time of the
interpreter.

Obtaining an entry with an integer key from a table is slow with the
Lua-C API because of its abstractions. When manipulating arrays in Pallene,
the code accesses the pointer to the table directly. In C, the API functions that
manipulate tables receive the index of the table in the Lua stack. For every
API call, the code verifies whether the value in the stack is indeed a Lua table
before the operation. Moreover, the function call itself introduces an overhead.
All theses overheads make the program using the API slower than the Lua
interpreter.

All benchmarks that use the C-API to manipulate tables that represent
records are slower than the Lua interpreter. The C code uses the API functions
lua_getfield and lua_setfield to manipulate records represented as tables.
These functions receive a string constant with the name of the field the code
wants to access. Then, these functions have to look up for the respective object
in the Lua string cache. The Lua-C API does not expose this string object to
C, so it is not possible for the C code to store a pointer to this object. On the
other hand, the Lua interpreter stores the pointer to the string constant in the
function object, making it faster than the C code.

For the benchmarks where the C programs use userdata objects to
represent records, the performance varied greatly. After the C code obtains
the pointer to the userdata, the code that the Pallene compiler generates is
equal to the C code for our benchmarks. However, both C and Pallene have to
verify the metatable of the userdata before obtaining its pointer. In Pallene,
the code stores the metatable as a upvalue of the Pallene closure. In C, the code
uses the function luaL_checkudata to verify the metatable of the userdata.
This function receives a string with the name of the metatable and looks
up the metatable in the global registry. Retrieving the metatable from the
global registry is slower than retrieving a upvalue from a closure, making the
metatable-verification process in C slower than in Pallene.

DBD
PUC-Rio - Certificação Digital Nº 1721787/CA



Chapter 6. Performance Evaluation 65
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Figure 6.1: Chart comparing of the running time of the experiments of
Table 6.1.
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7
Conclusions

We start this chapter by comparing Pallene to other systems that intro-
duce static type systems to scripting languages. Even though the companion
language approach is unique to Pallene, these other languages served as in-
spiration for Pallene. Later, we review the key points of this dissertation to
evaluate whether we reached our goals. We also review some points we did not
have time to work on and suggest avenues for future research.

7.1
Related Works

There are other languages that introduce a static type system to scripting
languages to gain performance. In the following paragraphs, we present these
languages and explain why they are different from Pallene.

Crystal (CARDIFF, 2019) is a statically-typed programming language
that features a syntax inspired by Ruby. By using a similar syntax, the authors
of Crystal believe it has a low learning curve for Ruby programmers. Crystal
also features a global type inference system so programmers can omit some type
annotations. Differently from the relation between Pallene and Lua, Crystal
does not aim to interoperate with Ruby; Crystal is a completely separate
language. Moreover, there are no guarantees that removing the types of a
Crystal program results in a valid Ruby program.

Cython (BEHNEL et al., 2010) is an extension of the Python language
that features C type annotations. Like the relation between Pallene and Lua,
programmers can write Cython code that is callable from Python. Compared
to Pallene, Cython has narrower objectives, which are reducing the overhead
for numerical computations and interfacing with existing C libraries. Cython
does not feature types that are compatible with the dynamic data structures
of Python. Due to this limitation, Cython can not provide large speedups for
programs that operate over Python data structures.

RPython (ANCONA et al., 2007) is a restricted subset of Python which
can be compiled to efficient machine code. Differently from Pallene, the
programmer does not add static type annotations to RPython code. Instead,
RPython uses a global type inferring system to generate efficient machine code.
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RPython’s objectives are also different from Pallene’s objectives. While Pallene
is a general-purpose language that interoperates with Lua, RPython is part of
a framework to build interpreters. RPython code is compiled into standalone
executables that do not interoperate directly with Python.

Terra (DEVITO, 2014) is a low-level statically-typed system language
that features a syntax similar to Lua. Terra is designed to use Lua as a
metaprogramming language, replacing other preprocessing techniques such
as C++’s templates and the C preprocessor. Programmers can use Lua
to generate high-performance Terra code during runtime. Differently from
Pallene, Terra does not provide tools to manipulate the dynamic Lua’s data
structures.

7.2
Evaluating our Work

We started this work by describing how programmers can use the com-
panion language approach to improve the performance of scripting languages.
We compared this approach to the scripting architecture, optional typing and
just-in-time compilers. Then, we presented Pallene, which is a companion lan-
guage for Lua. After presenting the language, we described the ahead-of-time
compiler we implemented for Pallene. Finally, we evaluated the performance
of our compiler by performing benchmarks and comparing the results with the
Lua interpreter, LuaJIT, and C programs that use the C API.

One of the main objectives of Pallene is allowing a smooth migration
from Lua. Compared to C programs that use the Lua-C API, migrating from
Lua to Pallene is significantly easier since the conceptual gap is small. When
writing Pallene code, programmers do not need to write an interface layer to
receive Lua values and they can manipulate Lua data structures directly. For
the benchmark programs of Chapter 6, migrating to Pallene was just a matter
of adding the correct type annotations to the Lua programs.

The Lua-C API has abstractions that help programmers by hiding the
internals of the Lua interpreter. However, these abstractions introduce a
runtime performance overhead. In our benchmarks, we presented several cases
where the C programs using the C-API were slower than the Lua interpreter.
By manipulating the Lua data structures directly, Pallene does not experience
the runtime overhead of the C API. In all of our benchmarks, Pallene was
faster than the Lua interpreter.

It is harder to develop a just-in-time (JIT) compiler than an ahead-of-
time (AOT) compiler. By introducing a static type system, we were able to
implement an AOT compiler for Pallene that generates C. Our compiler is
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more portable than LuaJIT and its implementation is more straight-forward
than a JIT compiler. Even though our compiler is simpler than LuaJIT, the
performance it achieves is comparable to LuaJIT’s performance. For most of
our benchmarks, the performance of our Pallene compiler was in the same
order of magnitude of LuaJIT’s performance.

In this dissertation, we introduced two types of records to Pallene: L-
records and C-records. Both record types offer similar functionality but they
feature two completely different underlying representations. Since C-records
are represented by static data structures, Pallene code can manipulate them
faster than L-records. On the other hand, manipulating L-records is faster than
C-records in Lua given the runtime overhead of metatables.

Programmers should consider the runtime performance of each type of
record to decide which one is more suitable for their programs. If a program
manipulates a given record in Lua often, then L-records should be used to
avoid decreasing the performance. Otherwise, it is preferable to use C-records
because they are faster in Pallene. We recommend programmers to benchmark
their own programs with the two types of records to find which one is more
suitable for each case.

The Pallene compiler achieved favorable performance results by leverag-
ing the optimizations of a mature C compiler. However, there are optimizations
that the C compiler can not perform for Pallene. For instance, the C compiler
can not perform a bound-check elimination for Pallene arrays as we observed
in Chapter 6. One avenue of research that we are currently exploring is imple-
menting these optimizations in the Pallene compiler.

Besides the improvements in performance, there are other improvements
to be made in the Pallene language itself. We could easily migrate the
benchmark programs to Pallene because they were straight-forward programs
that manipulate basic data structures. The Pallene type system is very
simplistic and cannot represent more complex Lua programs. Another avenue
of research is adding more features to the Pallene type system to facilitate the
migration from Lua. In particular, we want to introduce polymorphism and
closures to Pallene without impacting Pallene’s performance.

Finally, a key feature of system languages is still missing from Pallene.
System languages should be able to interface with other system libraries and
with the operating system. To support this feature, we want to implement a
foreign function interface (FFI) in Pallene. The FFI should allow Pallene to
call C functions and manipulate C data structures. By interfacing with C, there
will not be anything else preventing Pallene to be used as a system language.
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